Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2018 Vol.37 No.4

Age-dependent Microstructure and Immunohistochemical Localization of Glial Fibrillary Acidic Protein in the Retina of Scincella tsinlingensis
Author of the article:GAO Yanyan, LI Lin, ZHAO Yu, ZHU Niu, YANG Chun*
Author's Workplace:School of Life Sciences, Shanxi Normal University, Linfen, Shanxi Province 041004, China
Key Words:Scincella tsinlingensis; retina; glial fibrillary acidic protein
Abstract:The age-dependent microscopic structure of Scincella tsinlingensis retina was observed under light microscope, and the immunohistochemical localization and expression intensity of glial fibrillary acidic protein (GFAP) were statistically analyzed. The results showed that the retina of S. tsinlingensis was divided into 10 layers from the inside to outside, and this was consistent with the structural characteristics of lizards' retina. The total thickness of sub-adult and adult retina increased significantly compared with the juvenile, however, no significant difference was observed among the thickness of ganglion cells layer, outer limiting membrane, and layer of rods and cones. There were also no significant differences in the number of retinal nucleus layers among different age groups, which were composed of 1-2 layers in the outer nuclear layer, 3-4 layers in the ganglion cells layer and 6-8 layers in the inner nuclear layer. The immunoreactivity of GFAP in the retina was mainly located in the inner limiting membrane and the nerve filament layer, and the nerve fiber layer was the most positive. The expression of GFAP in the retina showed age-related changes:adult > juvenile > subadult. Therefore, the expression of GFAP in the retina of S. tsinlingensis is related to age, and this may be involved in the regulation of physiological functions during the development of retina.
2018,37(4): 439-444 收稿日期:2018-03-28
DOI:10.11984/j.issn.1000-7083.20180103
分类号:Q954;Q959.6
基金项目:国家级大学生创新创业训练计划项目(201710118002)
作者简介:高燕燕(1993-),女,硕士研究生,研究方向:动物结构与机能,E-mail:yanyannn@yeah.net
*通讯作者:杨纯,E-mail:yangchun774@163.com
参考文献:
鲍义恒, 陈云俊. 1979. 蛤蚧视网膜显微结构及其光感受细胞的亚显微结构[J]. 生物化学和生物物理学进展, 6(3):71-74.
邓海波, 谢伯林, 朱丽, 等. 2012. 兔眼钝挫伤后视网膜Müller细胞GFAP表达的变化[J]. 国际眼科杂志, 12(9):1647-1649.
柯技, 陈晓瑞, 易少华, 等. 2007. 大鼠视神经挫伤后视网膜神经节细胞形态改变及GFAP表达的变化[J]. 华中科技大学学报(医学版), 36(3):370-373.
马小梅, 计翔. 2001. 中国石龙子个体发育过程中头部两性异型和食性的变化[J]. 生态学杂志, 20(3):12-16.
孙庆艳, 梅斌, 王海涛, 等. 2004. 猫视网膜年龄相关的形态学变化[J]. 动物学研究, 25(6):538-542.
王厚华, 曲富金, 张铁峰. 1980. 两种夜间活动壁虎的视网膜光学显微镜和电子显微镜观察[J]. 动物学报, 26(1):102-103.
王丽敏, 邢向阳, 杨纯. 2015. 秦岭滑蜥排泄系统组织形态学观察[J]. 四川动物, 34(3):389-393.
王丽敏, 杨纯, 郭俐. 2016. 秦岭滑蜥消化系统组织结构及消化管嗜银细胞观察[J]. 动物学杂志, 51(4):614-622.
王丽敏. 2016. 秦岭滑蜥端脑细胞构筑及成体神经发生[D]. 临汾:山西师范大学.
王志宝. 2000. 国家林业局令第七号——国家保护的有益的或者有重要经济、科学研究价值的陆生野生动物名录[J]. 野生动物学报, 22(5):19-24.
王智超, 王笑蕾, 武军元, 等. 2008. 无蹼壁虎视网膜GFAP免疫阳性的分布和衰老相关性变化[J]. 动物学杂志, 43(1):16-20.
谢权, 杨纯, 侯姝君. 2012. 秦岭滑蜥中脑视叶组织学结构观察[J]. 山西师范大学学报 (自然科学版), 26(1):79-82.
薛黎萍, 丁鹏, 肖丽波, 等. 2010. 胶质纤维酸性蛋白在视神经横断后大鼠视网膜神经胶质细胞中的表达[J]. 中华眼外伤职业眼病杂志, 32(4):256-260.
杨纯, 张育辉. 2007. 原癌基因FOS蛋白、雌二醇及其受体在中国林蛙不同时期精巢中的表达变化[J]. 动物学研究, 28(3):303-310.
张育辉, 贾林芝. 2003. 蜥蜴亚目5种动物视网膜结构的观察比较[J]. 西北大学学报 (自然科学版), 33(4):475-477.
张育辉, 刘家坤. 1994. 七种啮齿动物视觉器官形成结构的比较研究[J]. 兽类学报, 14(3):189-194.
赵尔宓. 1999. 中国动物志 爬行纲 第二卷 有鳞目 蜥蜴亚目[M]. 北京:科学出版社.
Bigini P, Bastone A, Mennini T. 2001. Glutamate transporters in the spinal cord of the wobbler mouse[J]. Neuroreport, 12(9):1815-1820.
Hotta N, Koh N, Sakakibara F, et al. 1995. An aldose reductase inhibitor, TAT, prevents electroretinographic abnormalities and ADP-induced hyperaggregability in streptozotocin-induced diabetic rats[J]. European Journal of Clinical Investigation, 25(12):948-954.
Lang DM, Del MRM, Arbelo-Galvan JF, et al. 2002. Regeneration of retinal axons in the lizard Gallotia galloti is not linked to generation of new retinal ganglion cells[J]. Developmental Neurobiology, 52(4):322-335.
Romero-Alemán MM, Monzón-Mayor M, Yanes C, et al. 2004. Radial glial cells, proliferating periventricular cells, and microglia might contribute to successful structural repair in the cerebral cortex of the lizard Gallotia galloti[J]. Experimental Neurology, 188(1):74-85.
Sassoè PM, Panzanelli P, Artero C, et al. 1992. Comparative study of glial fibrillary acidic protein (GFAP)-like immunoreactivity in the retina of some representative vertebrates[J]. European Journal of Histochemistry, 36(4):467-477.
Schellini SA, Gregorio EA, Spadella CT, et al. 1995. Müller cells and diabetic retinopathy[J]. Brazilian Journal of Medical and Biological Research, 28(9):977-980.
Sueishi K, Hata Y, Murata T, et al. 1996. Endothelial and glial cell interaction in diabetic retinopathy via the function of vascular endothelial growth factor (VEGF)[J]. Polish Journal of Pharmacology, 48(3):307-316.
Williams DL. 2017. Regenerating reptile retinas:a comparative approach to restoring retinal ganglion cell function[J]. Eye (Lond), 31(2):167-172.
Yang C, Wang L, Xing X, et al. 2017. Seasonal variation in telencephalon cell proliferation in adult female tsinling dwarf skinks (Scincella tsinlingensis)[J]. Brain Research, 1662:7-15.
Yang C, Wang L. 2016. Histological and morphological observations on tongue of Scincella tsinlingensis (Reptilia, Squamata, Scincidae)[J]. Micron, 80:24-33.
CopyRight©2018 Editorial Office of Sichuan Journal of Zoology