Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2018 Vol.37 No.4

Analysis on the Intestinal Microbiota Diversity of Adult Periplaneta americana
Author of the article:HAO Yanqin1, ZHOU Chuang1, JIN Jiazheng1, SHEN Yongmei2, ZHANG Xiuyue1, YUE Bisong1*
Author's Workplace:1. Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
2. Sichuan Key Laboratory of Medicinal American Cockroach, Chengdu 610081, China
Key Words:Periplaneta americana; intestinal microbiota; high-throughput sequencing
Abstract:Periplaneta americana is not only an important pest affecting human health, but also a medicinal economic insect. Many studies have suggested that the type and quantity of intestinal microbiota are closely related to the host health. In this study, 16S rRNA high-throughput sequencing technique was used to analyze the intestinal microbiota of artificially fed P. americana. The results showed that a total of 67 492 16S rRNA sequences classified as 581 operational taxonomic units, annotated to 193 genera, 79 orders and 21 phyla, were obtained. Specifically, among the identified species in the intestinal microbiota of P. americana, Firmicutes (56.96%) and Bacteroidetes (33.13%) were the dominant phyla, Bacteroidales (32.11%), Bacillales (29.89%), Clostridiales (12.93%) and Lactobacillales (10.73%) were the dominant orders, Staphylococcus (16.59%), Bacillus (13.26%) and Parabacteroides (10.26%) were the dominant genera, and Staphylococcus sciuri (14.95%) was the most prevalent species. These results laid a solid foundation for further exploring the intestinal microbiota diversity and its relationship with the host P. americana.
2018,37(4): 415-419 收稿日期:2018-03-12
DOI:10.11984/j.issn.1000-7083.20180081
分类号:Q969.25
基金项目:四川好医生攀西药业有限责任公司资助项目
作者简介:郝艳芹(1989-),女,硕士研究生,研究方向:分子生态学,E-mail:1849853004@qq.com
*通讯作者:岳碧松,E-mail:bsyue@scu.edu.cn
参考文献:
段荟芹, 王利. 2015. 耗儿鱼松鼠葡萄球菌的分离鉴定及耐药性分析[J]. 中国畜牧兽医, 42(5):1288-1293.
李钧敏, 金则新. 2006. 一种高效可直接用于PCR分析的土壤总微生物DNA抽提方法[J]. 应用生态学报, 17(11):2107-2111.
刘晓飞, 刘娟, 田蕾, 等. 2015. 美洲大蠊成虫肠道可培养细菌多样性研究[J]. 微生物学通报, 42(11):2207-2214.
张晓杰, 莫晓畅, 莫建初. 2016. 白蚁共生放线菌研究进展[J]. 环境昆虫学报, 38(2):437-444.
张振宇, 圣平, 黄胜威, 等. 2017. 昆虫肠道菌群的多样性、功能及应用[J]. 氨基酸和生物资源, 39(4):231-239.
Bagde US, Uma G, Ram P. 2013. Isolation and characterization of gut-associated microbes in cockroach[J]. African Journal of Microbiology Research, 7(19):2034-2039.
Bertino-Grimaldi D, Medeiros MN, Vieira RP, et al. 2013. Bacterial community composition shifts in the gut of Periplaneta americana, fed on different lignocellulosic materials[J]. SpringerPlus, 2:609. DOI:https://doi.org/10.1186/2193-1801-2-609.
Carrasco P, Pérez-Cobas AE, van de PC. 2014. Succession of the gut microbiota in the cockroach Blattella germanica[J]. International Microbiology, 17(2):99-109.
Douglas AE. 2015. Multiorganismal insects:diversity and function of resident microorganisms[J]. Annual Review of Entomology, 60(1):17-34.
Edgar RC. 2013. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10):996-998.
Flint H. 2011. Obesity and the gut microbiota[J]. Journal of Clinical Gastroenterology, 45:S128-S132.
Inglin R, Stevens M, Meile L, et al. 2015. High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species[J]. Journal of Microbiological Methods, 114:26-29.
Loubinoux J, Bronowicki J, Pereira IAC. 2002. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases[J]. FEMS Microbiology Ecology, 40(2):107-112.
Mullins D. 2015. Physiology of environmental adaptations and resource acquisition in cockroaches[J]. Annual Review of Entomology, 60:473-492.
Nicholson JK, Holmes E, Kinross J, et al. 2012. Host-gut microbiota metabolic interactions[J]. Science, 336(6086):1262-1267.
Nicholson JK, Wilson ID. 2003. Opinion:understanding ‘global’ systems biology:metabonomics and the continuum of metabolism[J]. Nature Reviews Drug Discovery, 2(8):668-676.
Ondrejech A. 2016. Effect of diet and bacterial clearance on energy expenditure in the cockroach Periplaneta americana[R]. Columbus:The Ohio State University Denman Undergraduate Research Forum.
Pérezcobas AE, Maiques E, Angelova A, et al. 2015. Diet shapes the gut microbiota of the omnivorous cockroach Blattella germanica[J]. FEMS Microbiology Ecology, 91(4). DOI:10.1093/femsec/fiv022.
Quast C, Pruesse E, Yilmaz P, et al. 2013. The SILVA ribosomal RNA gene database project:improved data processing and web-based tools[J]. Nucleic Acids Research, 41(Database issue):590-596.
Sabree ZL, Kambhampati S, Moran NA. 2009. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont[J]. Proceedings of the National Academy of Science of the United States of America, 106(46):19521-19526.
Sabree ZL, Moran NA. 2014. Host-specific assemblages typify gut microbial communities of related insect species[J]. SpringerPlus, 3(1):138. DOI:10.1186/2193-1801-3-138.
Tailliez P. 2004. Lactobacilli:properties, habitats, physiological role and importance in human health[J]. Antibiotiques, 6(1):35-41.
Wang Q, Garrity GM, Tiedje JM, et al. 2007. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied & Environmental Microbiology, 73(16):5261-5267.
Xu J, Mahowald MA, Ley RE, et al. 2007. Evolution of symbiotic bacteria in the distal human intestine[J]. PLoS Biology, 5(7):e156. DOI:10.1371/journal.pbio.0050156.
CopyRight©2018 Editorial Office of Sichuan Journal of Zoology