Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Tel:+86-28-85410485
Fax:+86-28-85410485
Email:scdwzz@vip.163.com & scdwzz001@163.com
Your Position :Home->Past Journals Catalog->2017 Vol.36 No.3

Analysis of Genetic Diversity among Different Geographic Populations of Anaka burmensis (Hemiptera: Cicadellidae) Based on Part of mtDNA CO Ⅰ Gene Sequences
Author of the article:DONG Mengshu1, YANG Lin1,2,3*, CHEN Xiangsheng1,2,3, ZHANG Yujie1
Author's Workplace:1. Institute of Entomology, Guizhou University, Guiyang 550025, China;
2. Guizhou Key Laboratory for Plant Pest Management of Mountainous Region, Guiyang 550025, China;
3. Special Key Laboratory of Insect Resource Development and Utilization, Guiyang 550025, China
Key Words:Anaka burmensis; mtDNA CO Ⅰ gene; geographic population; genetic diversity
Abstract:Anaka burmensis is an important pest which feed on bamboo. To investigate the genetic variation of A. burmensis among different geographic populations in China, the 615 bp segments of the mitochondrial cytochrome coxidase subunit Ⅰ (CO Ⅰ) gene of A. burmensis individuals from 26 geographic populations were analyzed by using DNASP, MEGA, etc. The results showed that there were 546 conserved sites, 69 mutation sites, 33 haplotypes in the fragments; a high level of genetic diversity (haplotype diversity index:0.845; nucleotide diversity index:0.008 77) in the total population was detected. Additionally, high genetic differentiation (fixation index:0.729 15) was found among different geographic populations but with low gene flow level (0.598 5). The differences of the Neutral test (Tajima's D=-1.658 98, 0.10 > P > 0.05, Fu's Fs=-5.787, P>0.10) were not significant. The result of molecular variance analysis showed that the genetic differentiation among populations was 72.92% and higher than that of within populations (27.08%). Therefore, here we concluded the genetic structure of A. burmensis can provide a theoretical basis for future research of molecular biology and the control of this insect.
2017,36(3): 277-283 收稿日期:2017-01-21
DOI:10.11984/j.issn.1000-7083.20170026
分类号:Q38
基金项目:国家自然科学基金项目(31260178;31660209)
作者简介:董梦书(1991-),女,硕士研究生,主要从事农林昆虫多样性研究,E-mail:dongmsh_chl@163.com
*通讯作者:杨琳,E-mail:yanglin6626@163.com
参考文献:
卜云, 栾云霞, 郑哲民. 2006. 基于线粒体COⅡ基因的中国蝽科分子系统学研究(半翅目,异翅亚目)[J]. 动物分类学报, 31(2):239-246.
陈祥盛, 杨琳, 李子忠. 2012. 中国竹子叶蝉[M]. 北京:中国林业出版社:136-175.
付建玉, 李乐, 袁志军, 等. 2014. 基于mtDNA COⅠ的假眼小绿叶蝉系统发育研究[J]. 茶叶科学, 34(6):601-608.
花吉蒙, 董鹏志, 李明, 等. 2009. 绿环缘蝽(昆虫纲,半翅目,缘蝽科)线粒体基因组分析[J]. 动物分类学报, 34(1):1-9.
李正西, 沈佐锐. 2002. 赤眼蜂分子鉴定技术研究[J]. 昆虫学报, 45(5):559-566.
孙嵬, 张柱亭, 董辉, 等. 2013. 基于线粒体COI基因序列的黄胫小车蝗不同地理种群的遗传分化及基因流分析[J]. 昆虫学报, 56(8):907-916.
王静, 于毅, 陶云荔, 等. 2014. 山东省二点委夜蛾不同地理种群遗传结构[J]. 应用生态学报, 25(2):562-568.
王兴亚, 许国庆. 2014. 中国甜菜夜蛾地理种群的遗传分化与基因流[J]. 昆虫学报, 57(9):1061-1074.
肖永刚, 陈祥盛. 2014. 基于线粒体COⅠ基因的17种菱蜡蝉亚科昆虫DNA条形码研究(半翅目:蜡蝉总科:菱蜡蝉科)[J]. 山地农业生物学报, 33(2):44-50.
杨琳, 陈会明, 陈祥盛, 等. 1999. 贵州害竹叶蝉种类记述[J]. 贵州农业科学, 27(1):17-19.
张合彩, 乔格侠. 2008. 五节根蚜亚科(半翅目:蚜总科:瘿绵蚜科)基于线粒体基因COⅡ的分子系统学研究[J]. 四川动物, 27(5):754-757.
Boivin T, Bouvier JC, Beslay D, et al. 2004. Variability in diapause propensity within populations of a temperate insect species:interactions between insecticide resistance genes and photoperiodism[J]. Biological Journal of the Linnean Society, 83(3):341-351.
Dworakowska I.1993. Some Dikraneurini (Auchenorrhyncha:Cicadellidae:Typhlocybinae) from south-east Asia[J]. Oriental Insects, 27(1):151-173.
Folmer O, Black M, Hoeh W, et al. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates[J]. Molecular Marine Biology and Biotechnology, 3(5):294.
Fu JY, Han BY, Xiao Q. 2014. Mitochondrial COⅠ and 16sRNA evidence for a single species hypothesis of E. vitis, J. formosana and E. onukii in East Asia[J]. PLoS ONE, 9(12):e115259.
Lee W, Lee Y, Kim H, et al. 2014. Developing a new molecular marker for aphid species identification:evaluation of eleven candidate genes with species-level sampling[J]. Journal of Asia-Pacific Entomology, 17(3):617-627.
Ren Z, Zhong Y, Kurosu U, et al. 2013. Historical biogeography of eastern Asian-eastern north American disjunct Melaphidina aphids (Hemiptera:Aphididae:Eriosomatinae) on Rhus hosts (Anacardiaceae)[J]. Molecular Phylogenetics and Evolution, 69(3):1146-1158.
Rousset F. 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance[J]. Genetics, 145(4):1219-1228.
Simon C,Frati F, Beckenbach A, et al. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers[J]. Annals of the Entomological Society of America, 87(6):651-701.
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 123(3):585-595.
Tamura K, Stecher G, Peterson D, et al. 2013. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 30(12):2725-2729.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology