刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610065
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2020年第39卷第1期

高原鼢鼠肝脏组织细胞周期相关基因的进化和表达
Evolution and Expression of Liver Cell Cycle-Related Genes in Myospalax baileyi
安志芳1,2, 魏琳娜3, 王志洁1,2, 李苏华1,2, 徐波1,4, 李永晓1,4, 魏莲4, 魏登邦1,2,4*
点击:257次 下载:28次
DOI:10.11984/j.issn.1000-7083.20180349
作者单位:1. 青海大学省部共建三江源生态与高原农牧业国家重点实验室, 西宁 810016;
2. 青海大学医学院, 西宁 810016;
3. 青海大学畜牧兽医科学院, 西宁 810016;
4. 青海大学生态环境工程学院, 西宁 810016
中文关键字:高原鼢鼠;细胞周期基因;进化分析;海拔;表达
英文关键字:Myospalax baileyi; cell cycle-related gene; evolution analysis; altitude; expression
中文摘要:高原鼢鼠Myospalax baileyi是一种世居青藏高原的地下鼠,对严重的低氧环境有很强的适应性。低氧诱导细胞周期G1、G2期阻滞。为了探讨高原鼢鼠适应低氧环境的分子机制,应用生物信息学方法对p53下游细胞周期基因p21CyclinD1CyclinECDK6CDK214-3-3-σGadd45αB99CyclinB1的序列和编码的氨基酸序列进行了进化分析,并以SD大鼠Rattus norvegicus为对照,研究了这些基因在不同海拔(3 300 m、2 260 m)条件下的表达模式。结果表明:(1)高原鼢鼠细胞周期相关基因的序列与以色列鼹鼠Nannospalax galili同源性最高,达到90%以上;p21、CyclinD1、CyclinE和CyclinB1编码蛋白与以色列鼹鼠存在明显的趋同进化位点;SIFT评估发现,p21和CyclinB1氨基酸序列分别在第27号位点和第105号位点的变异对细胞周期调控功能有显著影响;(2)与低海拔条件相比,在高海拔条件下,高原鼢鼠肝脏组织中与G1期相关的基因p21表达水平显著上升,p21下游基因CyclinD1CyclinE、CDK6CDK2表达水平显著下降,而在SD大鼠中没有显著变化;与G2期相关的基因Gadd45αB9914-3-3-δCyclinB1在高原鼢鼠和SD大鼠中随海拔变化不发生明显变化。在不同海拔条件下,高原鼢鼠肝脏组织中的上述细胞周期相关基因的表达水平均极显著高于SD大鼠(P<0.01)。以上结果提示,高原鼢鼠经过长期的低氧适应,通过上调p21基因的表达抑制下游CyclinD1CyclinECDK6CDK2基因的表达,导致细胞周期G1期阻滞,从而提供充足的时间进行DNA修复,保证了DNA复制的准确性;同时高原鼢鼠肝脏组织中细胞周期的调控不仅与细胞周期基因的表达水平有关,而且可能与细胞周期因子p21的第27号位点和CyclinB1的第105号位点的变异有关。
英文摘要:The plateau zokor (Myospalax baileyi) is a specialized subterranean rodent living on the Qinghai-Tibet Plateau which has strong ability in adaptation to hypoxic environments. Hypoxia induces arrest of cell cycles G1 and G2. In order to understand the molecular mechanism of the adaptation of M. baileyi to hypoxic environments, the homologies, positive selection sites and the convergent evolution sites of p21, CyclinD1, CDK6, CyclinE, CDK2, 14-3-3-σ, Gadd45α, B99 and CyclinB1 genes were analyzed by MEGA 7.0, PAML 4.8 program and Ancestor program, respectively. In addition, the expression levels of these genes in the liver tissues under different altitudes (3 300 m and 2 260 m) were determined by real-time PCR and compared with those of SD rat (Rattus norvegicus). The results showed that, (1) the nucleotide and amino acid sequences of the cell cycle-related genes in M. baileyi had high homologies (>90%) with Nannospalax galili; p21, CyclinD1, CyclinE and CyclinB1 of M. baileyi and N. galili occurred convergent sites. SIFT test showed that 27 and 105 variation sites might influence the regulation of p21 and CyclinB1, respectively. (2) Compared to low altitude of 2 260 m, the expression level of p21 (cell cycle G1-related gene) in M. baileyi liver tissues under high altitude of 3 300 m was significant increased, while its downstream genes CyclinD1, CyclinE, CDK6 and CDK2 were significant decreased. By contrast, the expression levels of these genes were not significantly different in R. norvegicus. Moreover, no significant differences of the expression levels of cell cycle G2-related genes such as Gadd45α, B99, 14-3-3-δ and CyclinB1 were detected in M. baileyi and R. norvegicus under different altitudes. Compared to R. norvegicus, the expression levels of all the tested cell cycle-related genes were significantly higher in M. baileyi. These results suggested that, the up-regulated p21 and down-regulated CyclinD1, CyclinE, CDK6 and CDK2 genes, which can induce the arrest of cell cycle G1 and thus provide sufficient time for DNA repair and ensure the accuracy of DNA replication, contribute to the long-time adaptation of M. baileyi to hypoxic environments. The regulation of cell cycle in the liver of M. baileyi was not only related to the expression levels of cell cycle-related genes, but may also be related to the variation sites at residue 27 and 105 of p21 and CyclinB1, respectively.
2020,39(1): 1-14 收稿日期:2018-11-21
分类号:Q959.837;Q344+.13
基金项目:青海省自然科学基金项目(2016-ZJ-901)
作者简介:安志芳(1990-),博士研究生,主要从事高原动物资源保护与利用研究,E-mail:anzhifang90@126.com
*通信作者:魏登邦,E-mail:weidengbang@163.com
参考文献:
樊乃昌, 施银柱. 1982. 中国鼢鼠(Eospalax)亚属分类研究[J]. 兽类学报, 2(2):183-199.
李筱, 魏莲, 汪洋, 等. 2015. 高原鼠兔心脏中Ldh-c基因的表达及其对无氧糖酵解水平的影响[J]. 生理学报, 67(3):312-318.
刘仁华. 1995. 中国鼢鼠的分类及地理区划[J]. 国土与自然资源研究, 3:54-55.
王祖望, 曾缙祥, 韩永才. 1979. 高原鼠兔和中华鼢鼠气体代谢的研究[J]. 动物学报, 25(1):75-85.
许利娜, 魏莲, 汪洋, 等. 2015. 高原鼠兔脑组织中精子特异性乳酸脱氢酶的作用[J]. 兽类学报, 35(4):431-437.
翟中和, 王喜忠, 丁明孝. 2000. 细胞生物学[M]. 北京:高等教育出版社.
Agarwal ML, Taylor WR, Chernov MV, et al. 1998. The p53 network[J]. Journal of Biological Chemistry, 273(1):1-4.
An ZF, Zhao K, Wei LN, et al. 2018. p53 gene cloning and response to hypoxia in the plateau zokor, Myospalax baileyi[J]. Animal Biology, 68(3):289-308.
Arieli R, Ar A. 1981. Heart rate responses of the mole rat (Spalax ehrenbergi) in hypercapnic, hypoxic, and cold conditions[J]. Physiological Zoology, 54(1):14-21.
Ashur-Fabian O, Avivi A, Trakhtenbrot L, et al. 2004. Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation[J]. Proceedings of the National Academy of Sciences of the United States of America, 101(33):12236-12241.
Avivi A, Ashur-Fabian O, Joel A, et al. 2007. P53 in blind subterranean mole rats-loss-of-function versus gain-of-function activities on newly cloned Spalax target genes[J]. Oncogene, 26(17):2507-2512.
Balbín M, Hannon GJ, Pendás AM, et al. 1996. Functional analysis of a p21WAF1, CIP1, SDI1 mutant (Arg94→Trp) identified in a human breast carcinoma evidence that the mutation impairs the ability of p21 to inhibit cyclin-dependent kinases[J]. Journal of Biological Chemistry, 271(26):15782-15786.
Balter M, Vogel G. 2001. Cycling toward Stockholm[J]. Science, 294(5542):502-503.
Bozdogan H. 1987. Model selection and Akaike's information criterion (AIC):the general theory and its analytical extensions[J]. Psychometrika, 52(3):345-370.
Brooks DG. 1989. Akaike information criterion statistics[J]. Technometrics, 31(2):270-271.
Buffenstein R, Jarvis JUM. 2002. The naked mole rat-a new record for the oldest living rodent[J/OL]. Science of Aging Knowledge Environment:Sage KE, 2002(21):pe7[2018-08-10]. https://www.sageke.sciencemag.org/cgi/content/full/2002/21/pe7. DOI:10.1126/sageke.2002.21.pe7.
Buffenstein R. 2008. Negligible senescence in the longest living rodent, the naked mole-rat:insights from a successfully aging species[J]. Journal of Comparative Physiology B, 178(4):439-445.
Burland TG. 2000. DNASTAR's lasergene sequence analysis software[M]//Stephen M, Stephen AK. Bioinformatics methods and protocols. Totowa, NJ:Humana Press.
Cazzalini O, Scovassi AI, Savio M, et al. 2010. Multiple roles of the cell cycle inhibitor p21 CDKN1A in the DNA damage response[J]. Reviews in Mutation Research, 704(1):12-20.
Coats S, Flanagan WM, Nourse J, et al. 1996. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle[J]. Science, 272(5263):877-880.
Danial-Farran N, Nasser NJ, Beiles A, et al. 2017. Adaptive evolution of coagulation and blood properties in hypoxia tolerant Spalax in Israel[J]. Journal of Zoology, 303(3):226-235.
Darriba D, Taboada GL, Doallo R, et al. 2012. jModelTest 2:more models, new heuristics and parallel computing[J/OL]. Nature Methods, 9(8):772[2018-07-02]. https://doi.org/10.1038/nmeth.2109.
Edrey YH, Casper D, Huchon D, et al. 2012. Sustained high levels of neuregulin-1 in the longest-lived rodents; a key determinant of rodent longevity[J]. Aging Cell, 11(2):213-222.
Fang XD, Nevo E, Han LJ, et al. 2014. Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax[J/OL]. Nature Communications, 5:3966[2018-09-01]. https://www.nature.com/articles/ncomms4966. DOI:10.1038/ncomms4966.
Gamerman D, Lopes HF. 2006. Markov chain Monte Carlo:stochastic simulation for Bayesian inference[M].Florida, USA:Chapman and Hall/CRC.
Gardner LB, Li Q, Park MS, et al. 2001. Hypoxia inhibits G1/S transition through regulation of p27 expression[J]. Journal of Biological Chemistry, 276(11):7919-7926.
Gartel AL, Radhakrishnan SK. 2005. Lost in transcription:p21 repression, mechanisms, and consequences[J]. Cancer Research, 65(10):3980-3985.
Glotzer M, Murray AW, Kirschner MW. 1991. Cyclin is degraded by the ubiquitin pathway[J]. Nature, 349(6305):132.
Goda N, Ryan HE, Khadivi B, et al. 2003. Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia[J]. Molecular and Cellular Biology, 23(1):359-369.
Hammer S, To KK, Yoo YG, et al. 2007. Hypoxic suppression of the cell cycle gene CDC25A in tumor cells[J]. Cell Cycle, 6(15):1919-1926.
Hermeking H, Lengauer C, Polyak K, et al. 1997. 14-3-3σ is a p53-regulated inhibitor of G2/M progression[J]. Molecular Cell, 1(1):3-11.
Hubbi ME, Gilkes DM, Rey S, et al. 2013. A nontranscriptional role for HIF-1α as a direct inhibitor of DNA replication[J/OL]. Science Signaling, 6(262):ra10[2018-09-01]. https://stke.sciencemag.org/content/6/262/ra10. DOI:10.1126/scisignal.2003417.
Huelsenbeck JP, Ronquist F. 2001. Mrbayes:Bayesian inference of phylogenetic trees[J]. Bioinformatics, 17(8):754-755.
Innocente SA, Abrahamson JLA, Cogswell JP, et al. 1999. p53 regulates a G2 checkpoint through cyclin B1[J]. Proceedings of the National Academy of Sciences of the United States, 96(5):2147-2152.
Johnson DG, Walker CL. 1999. Cyclins and cell cycle checkpoints[J]. Annual Review of Pharmacology and Toxicology, 39:295-312.
Kastan MB, Onyekwere O, Sidransky D, et al. 1991. Participation of p53 protein in the cellular response to DNA damage[J]. Cancer Research, 51(23 Part 1):6304-6311.
Kim EB, Fang X, Fushan AA, et al. 2011. Genome sequencing reveals insights into physiology and longevity of the naked mole rat[J]. Nature, 479(7372):223-227.
Krtolica A, Krucher NA, Ludlow JW. 1998. Hypoxia-induced pRB hypophosphorylation results from downregulation of CDK and upregulation of PP1 activities[J]. Oncogene, 17(18):2295-2304.
Kumar P, Henikoff S, Ng PC. 2009. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm[J]. Nature Protocols, 4(7):1073.
Kumar S, Stecher G, Tamura K. 2016. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 33(7):1870-1874.
Li J, Meyer AN, Donoghue DJ. 1997. Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation[J]. Proceedings of the National Academy of Sciences of the United States, 94(2):502-507.
Lukas J, Groshen S, Saffari B, et al. 1997. WAF1/Cip1 gene polymorphism and expression in carcinomas of the breast, ovary, and endometrium[J]. The American Journal of Pathology, 150(1):167.
Luo Y, Hurwitz J, Massagué J. 1995. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1[J]. Nature, 375(6527):159-161.
Malik A, Domankevich V, Lijuan H, et al. 2016. Genome maintenance and bioenergetics of the long-lived hypoxia-tolerant and cancer-resistant blind mole rat, Spalax:a cross-species analysis of brain transcriptome[J/OL]. Scientific Reports, 6:38624[2018-08-01]. https://www.nature.com/articles/srep38624. DOI:10.1038/srep38624.
Miyawaki S, Kawamura Y, Hachiya T, et al. 2015. Molecular cloning and characterization of the INK4a and ARF genes in naked mole-rat[J]. Inflammation and Regeneration, 35(1):42-50.
Nevo E, Ivanitskaya E, Beiles A. 2001. Adaptive radiation of blind subterranean mole rats:naming and revisiting the four sibling species of the Spalax ehrenbergi superspecies in Israel:Spalax galili (2n=52), S. golani (2n=54), S. carmeli (2n=58) and S. judaei (2n=60)[M]. Leiden, Netherlands:Backhuys Publishers.
Nevo E. 1999. Mosaic evolution of subterranean mammals:regression, progression, and global convergence[M]. Oxford, UK:Oxford University Press.
Nevo E. 2011. Evolution under environmental stress at macro-and microscales[J]. Genome Biology and Evolution, 3:1039-1052.
Noble MEM, Endicott JA, Brown NR, et al. 1997. The cyclin box fold:protein recognition in cell-cycle and transcription control[J]. Trends in Biochemical Sciences, 22(12):482-487.
Pines J, Hunter T. 1994. The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B[J]. The EMBO Journal, 13(16):3772-3781.
Pucci B, Kasten M, Giordano A. 2000. Cell cycle and apoptosis[J]. Neoplasia, 2(4):291-299.
Robbins J, Dilwortht SM, Laskey RA, et al. 1991. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence:identification of a class of bipartite nuclear targeting sequence[J]. Cell, 64(3):615-623.
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3:Bayesian phylogenetic inference under mixed models[J]. Bioinformatics, 19(12):1572-1574.
Schmidt H, Malik A, Bicker A, et al. 2017. Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax-a liver transcriptomics approach[J/OL]. Scientific Reports, 7:14348[2018-08-01]. https://www.nature.com/articles/s41598-017-13905-z. DOI:10.1038/s41598-017-13905-z.
Shao Y, Li JX, Ge RL, et al. 2015. Genetic adaptations of the plateau zokor in high-elevation burrows[J/OL]. Scientific Reports, 5:17262[2018-08-01]. https://www.nature.com/articles/srep17262. DOI:10.1038/srep17262.
Sherr CJ, Roberts JM. 1995. Inhibitors of mammalian G1 cyclin-dependent kinases[J]. Genes & Development, 9(10):1149-1163.
Sherr CJ, Roberts JM. 1999. CDK inhibitors:positive and negative regulators of G1-phase progression[J]. Genes & Development, 13(12):1501-1512.
Stöver BC, Müller KF. 2010. TreeGraph 2:combining and visualizing evidence from different phylogenetic analyses[J/OL]. BMC Bioinformatics, 11(1):7[2018-07-30]. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-7.
Swofford D. 2002. PAUP:phylogenetic analysis using parsimony, version 4.0 b10[M]. Sunderland:Sinauer Associates.
Tian X, Azpurua J, Hine C, et al. 2013. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat[J]. Nature, 499(7458):346-349.
Vogelstein B, Lane D, Levine AJ. 2000. Surfing the p53 network[J]. Nature, 408(6810):307-310.
Wang Z, Xu S, Du K, et al. 2016. Evolution of digestive enzymes and RNASE1 provides insights into dietary switch of cetaceans[J]. Molecular Biology and Evolution, 33(12):3144-3157.
Yang Z. 2007. PAML 4:phylogenetic analysis by maximum likelihood[J]. Molecular Biology and Evolution, 24(8):1586-1591.
Zhang J, Kumar S. 1997. Detection of convergent and parallel evolution at the amino acid sequence level[J]. Molecular Biology and Evolution, 14(5):527-536.
Zhang J, Nielsen R, Yang Z. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level[J]. Molecular Biology and Evolution, 22(12):2472-2479.
Zhao Y, Tang JW, Yang Z, et al. 2016. Adaptive methylation regulation of p53 pathway in sympatric speciation of blind mole rats, Spalax[J]. Proceedings of the National Academy of Sciences of the United States, 113(8):2146-2151.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2020四川动物》编辑部 蜀ICP备08107403号
您是本站第8303840名访问者

川公网安备 51010702000173号