刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610064
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2018年第37卷第3期

基于线粒体细胞色素b基因序列探讨长江流域斑点蛇(鱼句)种群遗传结构和地理分化
Population Genetic Structure and Geographic Differentiation of Saurogobio punctatus(Teleostei, Cypriniformes, Cyprinidae) in the Yangtze River Basin Based on Cytochrome b Gene Sequences
李小兵1,2, 唐琼英1, 俞丹1, 刘焕章1*
点击:122次 下载:0次
DOI:
作者单位:1. 中国科学院水生生物研究所, 水生生物多样性与保护重点实验室, 武汉 430072;
2. 中国科学院大学, 北京 100049
中文关键字:斑点蛇(鱼句);长江流域;Cyt b;遗传结构;地理分化
英文关键字:Saurogobio punctatus; Yangtze River basin; Cyt b; genetic structure; geographic differentiation
中文摘要:通过分析303尾来自长江上游赤水河、长江上游干流和长江中游的斑点蛇(鱼句)Saurogobio punctatus线粒体细胞色素bCyt b)基因序列,探讨这3个种群的遗传结构及地理分化过程。用于分析的Cyt b基因序列长1 097 bp,含变异位点80个,其中简约信息位点34个。303尾个体共检测到49个单倍型,整体呈现较高的单倍型多样性(Hd=0.803)和较低的核苷酸多样性(Pi=0.003 71)。由单倍型构建的系统发育树显示:所有来自长江中游种群的单倍型聚在一起,形成一个单系群,处于系统发育树最进化的位置;来自长江上游干流和赤水河种群的单倍型处于更基部的位置,不能构成单系群。长江上游干流种群与赤水河种群间具有较多的共享单倍型,二者间的遗传分化指数较低(FST=0.029 4),存在广泛的基因交流。而长江中游与长江上游干流及赤水河种群间的FST值分别为0.614 0和0.706 0,暗示长江上游与长江中游的斑点蛇(鱼句)间已发生高度分化。中性检验及错配分析显示,长江上游干流种群及赤水河种群经历过种群扩张,而长江中游种群未检测到扩张。Bayesian skyline plot(BSP)分析显示,斑点蛇(鱼句)种群从距今20万年前开始发生扩张,一直持续到末次间冰期(MIS5)晚期,而后迅速扩张。根据BSP分析及单倍型网络图,推测斑点蛇(鱼句)的起源中心可能在长江上游,然后通过种群扩张逐渐扩散到长江中游,进化成遗传分化较大的种群。
英文摘要:The population genetic structure and geographic differentiation process of 3 Saurogobio punctatus populations from the Chishui River (one branch of the upper Yangtze River), the upper Yangtze River main stream, and the middle Yangtze River were studied based on mtDNA cytochrome b gene sequences of 303 individuals. The analyzed cytochrome b gene sequences were 1 097 bp in length, with 80 variable sites including 34 parsimony informative sites. A total of 49 haplotypes were identified from 303 individuals, which showed high haplotype diversity (Hd=0.803) and low nucleotide diversity (Pi=0.003 71), respectively. Based on haplotype dataset, phylogenetic trees which were constructed using neighbor-joining, maximum likelihood and Bayesian inference methods showed that all haplotypes from the middle Yangtze River clustered together and formed a monophyletic group. This group locates in the derived position of the phylogenetic trees, whereas haplotypes from the upper Yangtze River main stream and the Chishui River failed to form a monophyletic group with relative basal positions in the phylogenetic tree. Extensive gene flow might exist between populations of the upper Yangtze River main stream and Chishui River since many haplotypes were shared by them with a low genetic differentiation index (FST=0.029 4), indicating a close relationship. The FST values between the middle Yangtze River and Chishui River populations, and between the middle Yangtze River and the upper Yangtze River main stream populations were 0.614 0 and 0.706 0, respectively, indicating a high level differentiation. Neutral test and mismatch analysis showed that both the populations of upper Yangtze River main stream and Chishui River had experienced population expansion, but not in the middle Yangtze River population. Bayesian skyline plot (BSP) analysis showed that S. punctatus populations started the expansion from 0.20 Ma BP, and lasted until the end of the last interglacial period, the Marine Isotope Stage 5, then experienced a rapid expansion. According to BSP analysis and haplotype network, we inferred that the origination center of S. punctatus population may be the upper Yangtze River, and then gradually spread to the middle Yangtze River via population expansion, and eventually evolved into a distinct genetic population.
2018,37(3): 251-259 收稿日期:2015-11-25
DOI:10.11984/j.issn.1000-7083.20150373
分类号:Q111;Q959.4
基金项目:国家自然科学基金项目(31272306)
作者简介:李小兵(1991-),硕士研究生,主要从事鱼类保护生物学研究,E-mail:chnlixiaobing@163.com
*通讯作者:刘焕章,E-mail:hzliu@ihb.ac.cn
参考文献:
陈宜瑜. 1998. 中国动物志 硬骨鱼纲 鲤形目(中卷)[M]. 北京:科学出版社:379-389.
丁淑荃, 万全, 李飞, 等. 2013. 斑点蛇精子结构研究[J]. 安徽农业大学学报, 40(6):959-963.
范启, 何舜平. 2014. 长江流域种群遗传多样性和遗传结构分析[J]. 水生生物学报, 38(4):627-635.
任泷, 吴金明, 李雷, 等. 2014. 赤水河中华倒刺鲃的形态分化及Cyt b基因序列比较研究[J]. 淡水渔业, 44(6):58-64.
田辉伍, 段辛斌, 汪登强, 等. 2013. 长江上游长薄鳅Cyt b基因的序列变异与遗传结构分析[J]. 淡水渔业, 43(6):12-18.
袁希平, 严莉, 徐树英, 等. 2008. 长江流域铜鱼和圆口铜鱼的遗传多样性[J]. 中国水产科学, 15(3):377-385.
Arundell K, Dunn A, Alexander J, et al. 2015. Enemy release and genetic founder effects in invasive killer shrimp populations of Great Britain[J]. Biological Invasions, 17(5):1439-1451.
Brooks TM, Cuttelod A, Faith DP, et al. 2015. Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas?[J]. Philosophical Transactions of the Royal Society B, 370:20140019. DOI:10.1098/rstb.2014.0019.
Brown WM, George M, Wilson AC. 1979. Rapid evolution of animal mitochondrial DNA[J]. Proceedings of the National Academy of Sciences of USA, 176(4):1967-1971.
Chen YF, He DK. 2002. Biodiversity in the Yangtze River basin fauna and distribution of fishes[J].Journal of Ichthyology, 42:161-171.
Cheng F, Li W, Castello L, et al. 2015a. Potential effects of dam cascade on fish:lessons from the Yangtze River[J]. Reviews in Fish Biology and Fisheries, 3:569-585.
Cheng F, Li W, Klopfer M, et al. 2015b. Population genetic structure and its implication for conservation of Coreius guichenoti in the upper Yangtze River[J]. Environmental Biology of Fishes, 98(9):1999-2007.
Chiu TH, Kuo CW, Lin HC, et al. 2015. Genetic diversity of ivory shell (Babylonia areolata) in Taiwan and identification of species using DNA-based assays[J]. Food Control, 48:108-116.
Drummond AJ, Suchard MA, Xie D, et al. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7[J]. Molecular Biology and Evolution, 29:1969-1973.
Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 10:564-567.
Goodall-Copestake WP, Tarling GA, Murphy EJ. 2012. On the comparison of population-level estimates of haplotype and nucleotide diversity:a case study using the gene cox1 in animals[J]. Heredity, 109:50-56.
Guindon S, Gascuel O. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood[J]. Systematic Biology, 52:696-704.
Lakshmanan LK, Gruber J, Halliwell B, et al. 2015. Are mutagenic non D-loop direct repeat motifs in mitochondrial DNA under a negative selection pressure?[J]. Nucleic Acids Research, 43(8):4098-4108.
Larkin MA, Blackshields G, Brown NP, et al. 2007. Clustal W and clustal X version 2.0[J]. Bioinformatics, 23:2947-2948.
Patwardhan A, Ray S, Roy A. 2014. Molecular markers in phylogenetic studies-a review[J]. Phylogenetic and Evolutionary Biology, 2:131.Perdices A, Cunhaa C, Coelhoa MM. 2004. Phylogenetic structure of Zacco platypus (Teleostei, Cyprinidae) populations on the upper and middle Chang Jiang (=Yangtze) drainage inferred from cytochrome b sequences[J]. Molecular Phylogenetics and Evolution, 31(1):192-203.
Ramos-Onsins SE, Rozas J. 2002. Statistical properties of new neutrality tests against population growth[J]. Molecular Biology and Evolution, 19(12):2092-2100.
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3:Bayesian phylogenetic inference under mixed models[J]. Bioinformatics, 19:1572-1574.
Swofford DL. 2002. PAUP*:phylogenetic analysis using parsimony (* and other methods), version 4[M]. Sunderland, Massachusetts:Sinauer Associates.
Tamura KG, Stecher D, Peterson AF, et al. 2013. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 30:2725-2729.
Tang QY, Li XB, Yu D, et al. 2018. Saurogobio punctatus sp. nov., a new cyprinid gudgen (Teleostei:Cypriniformes) from the Yangtze River, based on both morphological and molecular data[J]. Journal of Fish Biology, 92(2):347-364.
Tao W, Jin XX, Xu TJ. 2013. The first complete mitochondrial genome from Bostrychus genus (Bostrychus sinensis) and partitioned Bayesian analysis of Eleotridae fish phylogeny[J]. Journal of Genetics, 92(2):247-257.
Thiel C, Tsukamoto S, Tokuyasud K, et al. 2015. Testing the application of quartz and feldspar luminescence dating to MIS 5 Japanese marine deposits[J]. Quaternary Geochronology, 29:16-29.
Wright S. 1978. Evolution and the genetics of populations volume 4:variability within and among natural populations[M]. Chicago:University of Chicago Press.
Yang M, Tian C, Liang XF, et al. 2014.Genetic structure and diversity in natural and stocked populations of the mandarin fish (Siniperca chuatsi) in China[J]. Genetics and Molecular Research, 14(2):5153-5160.
Zhang X, Gao X, Wang JW, et al. 2015. Extinction risk and conservation priority analyses for 64 endemic fishes in the upper Yangtze River, China[J]. Environmental Biology of Fishes, 98(1):261-272.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2018四川动物》编辑部 蜀ICP备08107403号-3
您是本站第6247044名访问者

川公网安备 51010702000173号