刊期:双月刊
主管单位:四川省科学技术协会
主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
地址:四川省成都市武侯区望江路29号四川大学生命科学学院内
邮编:610065
电话:028-85410485; 15881112385
传真:028-85410485
E-Mail:scdwzz@vip.163.com & scdwzz001@163.com
刊号:ISSN 1000-7083
        CN 51-1193/Q
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:300元/年

您所在位置:首页->过刊浏览->2015年第34卷第6期

植物氰化物对宝石上华蜗牛食物选择的影响
Effects of Plant Cyanide on Food Selection of Cathaica (Pliocathaica) orithyia
刘海纯, 杨冬梅, 陶双伦, 谢文华, 梁静, 李俊年*
点击:837次 下载:8次
DOI:
作者单位:吉首大学生物资源与环境科学学院, 湖南吉首416000
中文关键字:宝石上华蜗牛;植食性动物;三叶草;氰化物;食物选择
英文关键字:Cathaica (Pliocathaica) orithyia; herbivore; clover; cyanide; food selection
中文摘要:为验证植物氰化物能影响植食性动物的食物选择以及植食性动物的采食能诱导植物合成氰化物的假设,本研究分别在野外围栏和实验室内测定了宝石上华蜗牛Cathaica (Pliocathaica) orithyia对氰化物含量不同而其他营养成分相近的红三叶草Trifolium pratense和白三叶草T. repens的选择性,以及在宝石上华蜗牛的采食作用下,2种三叶草再生叶片中氰化物含量的变化。结果表明,无论在野外围栏还是在实验室条件下,宝石上华蜗牛均嗜食氰化物含量较低的红三叶草,而避食氰化物含量较高的白三叶草;实验个体对经其采食后的2种三叶草再生茎叶24 h的采食量较初次对三叶草24 h的采食量均显著降低;2种三叶草被宝石上华蜗牛取食后,其叶片中氰化物的含量均显著升高。因此,三叶草中的氰化物能有效阻遏宝石上华蜗牛对其采食,同时,宝石上华蜗牛的采食能诱导三叶草中氰化物的合成。
英文摘要:Plant chemical defense and the corresponding countermeasures of herbivores have become a focus of nutritional and evolutionary ecology. The plant chemical defense comprises quantitative and qualitative aspects. Cyanide is a qualitative defensive compound that is widely distributed in plants. Plant tissues damaged by herbivores will release hydrocyanic acid (HCN), a potent toxin to herbivores. To verify the hypothesis that plant cyanide may affect food selection of herbivores, and grazing by herbivores may induce the synthesis of cyanide in plants, we measured the selectivity of snail Cathaica (Pliocathaica) orithyia on red clover Trifolium pratense and white clover T. repens with different contents of cyanide but similar contents of nutrients under field enclosures or indoor laboratory conditions, moreover, the cyanide content in regenerative leaves of the clovers after grazing by snails was determined. The results showed that, when T. pratense and T. repens were simultaneously provided, C. (P.) orithyia preferred T. pratense with low cyanide contents over T. repens with high cyanide contents under field enclosures and laboratory conditions; the 24 h food intake of individuals on the regenerative stems and leaves of the clovers by snails was significantly decreased compared with that of the initial feeding; the content of cyanide in the clovers was significantly increased by snails' grazing. These results indicated that, cyanide can effectively inhibit the grazing by snails, at the mean time, the grazing by snails can induce the synthesis of cyanide in clovers.
2015,34(6): 910-915 收稿日期:2015-03-31
DOI:10.11984/j.issn.1000-7083.20150118
分类号:Q959.21
基金项目:湖南省科技计划项目(20120061); 国家自然科学基金面上项目(31460564); 吉首大学校级科研项目、吉首大学研究生科研创新项目(15JDY023; JGY201527)
作者简介:刘海纯(1990—),女,硕士研究生,研究方向为动物生态学,E-mail:lhchun1010@126.com
*通讯作者:李俊年,男,教授,博士,研究方向为动物生态学,E-mail:junnianl@163.com
参考文献:
国家环境保护局. 1990. 水质 氰化物的测定, GB/T 7486-1987, GB/T 7487-1987[C]// 环境保护国家标准汇编. 北京: 中国标准出版社.
王燕, 戈峰, 李镇宇. 2001. 马尾松诱导化学物质变化的时空动态[J]. 生态学报, 21(8): 1256-1261.
Agrawal AA. 2011. Current trends in the evolutionary ecology of plant defence[J]. Functional Ecology, 25(2): 420-432.
Agrawal AA, Tuzun S, Bent E. 1999. Induced plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture[M]. Saint Paul: APS Press.
Antoun H, Beauchamp CJ, Goussard N, et al. 1998. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.)[J]. Plant and Soil, 204(1): 57-67.
Ballhorn DJ, Elias JD. 2014. Salinity-mediated cyanogenesis in white clover (Trifolium repens) affects trophic interactions[J]. Annals of Botany, 114(2): 357-366.
Ballhorn DJ, Kautz S, Rakotoarivelo FP. 2009. Quantitative variability of cyanogenesis in Cathariostachys madagascariensis-the main food plant of bamboo lemurs in southeastern Madagascar[J]. American Journal of Primatology, 71(4): 305-315.
Baumeister R, Schievelbein H, Zickgraf-Rüdel G. 1975. Toxicological and clinical aspects of cyanide metabolism[J]. Arzneimittel-forschung, 25(7): 1056-1064.
Charlton JFL. 1978. Slugs as a possible cause of establishment failure in pasture legumes oversown in boxes[J]. New Zealand Journal of Experimental Agriculture, 6(4): 313-317.
Collins T. 2000. Inducible plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture[J]. Ecological Entomology, 25(4): 497.
Crush JR, Caradus JR. 1995. Cyanogenesis potential and iodine concentration in white clover (Trifolium repens L.) cultivars[J]. New Zealand Journal of Agricultural Research, 38(3): 309-316.
Cyr H, Pace ML. 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems[J]. Nature, 361(6408): 148-150.
Dart RC, Bogdan GM. 2004. Acute cyanide poisoning: causes, consequences, recognition and management[J]. Frontline First Responder, 2(3): 19-22.
Dirzo R, Harper JL. 1982. Experimental studies on slug-plant interactions: III. Differences in the acceptability of individual plants of Trifolium repens to slugs and snails[J]. The Journal of Ecology, 70(1): 101-117.
Eskelinen A, Harrison S, Tuomi M. 2012. Plant traits mediate consumer and nutrient control on plant community productivity and diversity[J]. Ecology, 93(12): 2705-2718.
Gershenzon J. 1994. Metabolic costs of terpenoid accumulation in higher plants[J]. Journal of Chemical Ecology, 20(6): 1281-1328.
Gleadow RM, Woodrow IE. 2002. Mini-review: constraints on effectiveness of cyanogenic glycosides in herbivore defense[J]. Journal of Chemical Ecology, 28(7): 1301-1313.
Gracia R, Shepherd G. 2004. Cyanide poisoning and its treatment[J]. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 24(10): 1358-1365.
Hayden KJ, Parker IM. 2002. Plasticity in cyanogenesis of Trifolium repens L.: inducibility, fitness costs and variable expression[J]. Evolutionary Ecology Research, 4(2): 155-168.
Heil M. 2008. Indirect defence via tritrophic interactions[J]. New Phytologist, 178(1): 41-61.
Horrill JC, Richards AJ. 1986. Differential grazing by the mollusc Arion hortensis Fer. on cyanogenic and acyanogenic seedlings of white clover, Trifolium repens L.[J]. Heredity, 56(2): 277-281.
Johnson MTJ. 2011. Evolutionary ecology of plant defences against herbivores[J]. Functional Ecology, 25(2): 305-311.
Jones DA. 1966. On the polymorphism of cyanogenesis in Lotus corniculatus. I. selection by animals[J]. Canadian Journal of Genetics and Cytology, 8(3): 556-567.
Jones DA. 1998. Why are so many food plants cyanogenic?[J]. Phytochemistry, 47(2): 155-162.
Karban R, Myers JH. 1989. Induced plant responses to herbivory[J]. Annual Review of Ecology and Systematics, 20(1): 331-348.
Majumdar S, De KK, Banerjee S. 2004. Influence of two selective factors on cyanogenesis polymorphism of Trifolium repens L. in Darjeeling Himalaya[J]. Journal of Plant Biology, 47(2): 124-128.
Makkar HPS, Siddhuraju P, Becker K. 2007. Cyanogenic Glucosides/Cyanogens[M]// Makkar HPS, Siddhuraju P, Becker K. Plant secondary metabolites. New York: Humana Press: 61-65.
Morocco AP. 2005. Cyanides[J]. Crit Care Clin, 21(4): 691-705.
Provenza FD, Balph DF. 1990. Applicability of five diet-selection models to various foraging challenges ruminants encounter[M]// Hughes RN. Behavioural mechanisms of food selection. Berlin Heidelberg: Springer: 423-460.
Provenza FD, Pfister JA, Cheney CD. 1992. Mechanisms of learning in diet selection with reference to phytotoxicosis in herbivores[J]. Journal of Range Management, 45(1): 36-45.
Provenza FD, Villalba JJ, Cheney CD, et al. 1998. Self-organization of foraging behaviour: from simplicity to complexity without goals[J]. Nutrition Research Reviews, 11(2): 199-222.
Raffa KF. 1991. Induced defensive reactions in conifer-bark beetle systems[M]// Douglas W Tallamy & Michael J Raupp. Phytochemical Induction by Herbivores John Wileg & Sons Inc: 245-276.
Rasmann S, Agrawal AA. 2008. In defense of roots: a research agenda for studying plant resistance to belowground herbivory[J]. Plant Physiology, 146(3): 875-880.
Sahley C, Rudy JW, Gelperin A. 1981. An analysis of associative learning in a terrestrial mollusc[J]. Journal of Comparative Physiology, 144(1): 1-8.
Saucy F, Studer J, Aerni V, et al. 1999. Preference for acyanogenic white clover (Trifolium repens) in the vole Arvicola terrestris: I. Experiments with two varieties[J]. Journal of Chemical Ecology, 25(6): 1441-1454.
Sorensen JS, Heward E, Dearing MD. 2005. Plant secondary metabolites alter the feeding patterns of a mammalian herbivore (Neotoma lepida)[J]. Oecologia, 146(3): 415-422.
Urbańska A, Leszczyński B, Matok H, et al. 2002. Cyanide detoxifying enzymes of bird cherry-oat aphid[J]. Electronic Journal of Polish Agricultural Universities, Biology, 5(2): 1-4.
Viette M, Tettamanti C, Saucy F. 2000. Preference for acyanogenic white clover (Trifolium repens) in the vole Arvicola terrestris. II. Generalization and futher incestigations[J]. Chemical Ecology, 26(1): 101-122.
Villalba JJ, Provenza FD, Bryant JP. 2002. Consequences of the interaction between nutrients and plant secondary metabolites on herbivore selectivity: benefits or detriments for plants?[J]. Oikos, 97(2): 282-292.
Whitman RJ. 1973. Herbivore feeding and cyanogenesis in Trifolium repens L.[J]. Heredity, 30(2): 241-244.
Wink M. 2008. Plant secondary metabolism: diversity, function and its evolution[J]. Natural Product Communications, 3(8): 1205-1216.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:51-1193/Q |国际标准出版物号:1000-7083
主管单位:四川省科学技术协会  主办单位:四川省动物学会/成都大熊猫繁育研究基金会/四川省野生动植物保护协会/四川大学
开户银行:中国工商银行四川分行营业部东大支行(工行成都东大支行营业室)  帐户名:四川省动物学会  帐号:4402 2980 0900 0012 596
版权所有©2020四川动物》编辑部 蜀ICP备08107403号
您是本站第8518833名访问者

川公网安备 51010702000173号