荒漠地区野生动物调查方法探讨——一种新的调查方法介绍

龚明昊，张建军

摘要：本文全面总结了我国野生动物调查的主要方法及应用，分析了已有方法在应用中的问题和缺陷，介绍了国际狩猎场的盘羊资源调查方法——地样带法，并比较了该方法与样线法得出的调查结果差异和两种方法在实际应用中的区别。地样带法没有长度和宽度概念，也没有规定样带的形状，提供了一种确定调查范围和计算样带面积的简便方法，解决了过去调查中样带面积计算的难题。该方法完全根据实际调查的区域和地形地貌来确定样带的范围，使调查更具灵活性、机动性，并使密度的计算回归到了其本身的面积。该方法没有技术门槛，对广大基层野生动物保护工作者更具可操作性。

关键词：动物调查方法；盘羊调查；地样带法
中图分类号：S862 文献标识码：B 文章编号：1000－7083（2010）02－0320－05

Discussion on Wildlife Survey Methods in Desert Area: Introduction of a New Survey Method

GONG Ming-hao, ZHANG Jian-jun

(The Wildlife Monitoring Center of Academy of Forest Inventory and Planning, SFA, Beijing 100714, China)

Abstract: We summarized the methods and application of wildlife surveys in China, and analyzed the problems and faults with these methods. We introduced the method of map strip sampling which we used in a survey of argali resources in all international hunting grounds, and compared the results and differences in application with line transect sampling. Map strip sampling has no length and width; it also doesn’t require the fixed shape of sample. The method provided a convenient way to determine the region for survey and calculated the area of the strip sample, thus resolving problems with calculating the survey area in past work. Compared with line transect sampling, this method is more flexible and operational, and more consistent with the actual situation. It makes the calculation of density return to its original meaning. The method has no threshold on technique and is better and easy to understand and operate for all local staff of wildlife conservation.

Key words: wildlife survey method; argali survey; map strip sampling

野生动物调查是进行野生动物研究、保护、管理、利用的基础。我国有许多相关的调查方法和成果（陈华俊, 1986; 陈华俊, 1987; 盛和林, 徐宏发, 1992; 朴仁真, 1996）。在我国的野生动物调查和研究中发挥了重要作用。1995年我国启动了全国第一次陆生野生动物资源调查，对252种野生动物的资源状况、栖息地状况、驯养繁殖、利用与贸易状况做了全面的调查，这次调查制定了《全国陆生野生动物资源调查与监测技术规范》（中华人民共和国林业部, 1995），充分地检验了我国在野生动物调查方面的研究成果，既验证了许多有研究者表示的方法和经验，也发现了不少在实际应用中出现的问题。目前，国家林业局正在筹备开展全国第二次陆生野生动物资源调查，本文以正在开展的全国国际狩猎场盘羊资源调查方法为案例，探讨了荒漠地区动物调查的适宜方法，并能引起学界对动物调查方法研究的关注。

1 我国动物调查方法研究概况

关于动物调查，我国近年来有许多相关的调查方法和成

2 盘羊调查方法——地图样带法应用

2007年国家林业局下达了全国国际狩猎场盘羊资源调查的任务，为完成该任务，我们在样线法、样带法的基础上，结合出了一种基于地形图或GIS技术的样带法。该方法经过测试后已运用于该项目，2007年11月在新疆和静县对新疆各猎场和野生动物管理站推广了该方法，该方法得到了猎场、野生动物管理站和有关学者的肯定，并取得了较好的效果。该方法减小了调查的强度，提高了调查的效率。为介绍方便，文中将该方法命名为“地形样带法”(Map strip sampling)，现将该方法及结果情况介绍于后。为增加比较，作者将2005年在新疆塔什库尔干自然保护区内对盘羊调查结果也用于本次研究。

2.1 区域

国际狩猎场盘羊资源调查试点3处，分别为新疆塔什库尔干自然保护区内盘羊分布区，甘肃马鬃山国际狩猎场明水猎区，甘肃哈尔腾国际狩猎场(图1)。

新疆塔什库尔干自然保护区内盘羊分布区，范围北起塔什库尔干县的塔什库尔干河谷，南至霍尔果斯河，西至乌尔都克，东至塔什库尔干河谷，其地理坐标为东经75°16′7.58″～75°41′33.99″，北纬36°43′25.61″～37°22′20.49″，整个分布区面积为4012.17 km²。

甘肃马鬃山国际狩猎场位于肃北县飞地马鬃山镇内，北为明水猎区，南为南台子，东为南台子，西为马鬃山镇。马鬃山猎场位于肃北县西南部，北为南台子，南为南台子，东为南台子，西为马鬃山镇。马鬃山猎场由于南部地区开阔导致栖息地破坏，影响其调查结果，只把明水猎区纳入研究区域。其地理坐标为东经96°00′54″～96°48′06″，北纬42°00′30″～42°12′48″，明水猎区面积120 km²。

甘肃哈尔腾国际狩猎场位于甘肃阿克塞县南部山地建设乡境内，为党河南山南坡和土尔根坂山及两山之间的大小哈尔腾河谷和小哈尔腾河谷，东经95°16′21″～95°47′54″，北纬38°28′10″～39°8′40″，面积180 km²。

图1 调查区域位置图

Fig. 1 The study area located in Xinjiang and Gansu province

1. 新疆塔什库尔干自然保护区内部的盘羊分布区 The argali distribution in Tashkurgan Reserve.
2. 甘肃马鬃山国际狩猎场明水猎区 Mingshui hunting area of Gansu Maonan international hunting ground.
3. 甘肃哈尔腾国际狩猎场Gansu Harten international hunting ground.
在调查中可以用测量工具测量的经纬度来代替两侧盘羊分布点的经纬度，发现点的海拔可以测地形图或DEM上读取，不再要求调查队员到分布点去获取其相关地理信息，这样大大减少了调查的工作强度。当然对一些较开阔的河谷或距离过远的盘羊分布点，就不能用去实地发现点的经纬度去代替分布点的数据，需要从地图或DEM获取。

2.3 数据处理

调查末了，用每条样带上见到的动物数量除以样带的面积，即得到该样带上动物的密度。最后以调查区域内的样带的平均密度乘以调查范围的面积即可得到该区域或调查区域内动物种群的加权平均密度，即

\[\bar{D} = \frac{1}{n} \sum_{i=1}^{n} D_i \]

\[D_i = \frac{P_i}{A_i} \]

\[P = \bar{D} \times A \]

2.4 调查结果

基于该方法，我们计算了3个研究区域内的盘羊种群密度和数量（表1）。由于3个区域内的样线数量达不到原线法的要求，这里只比较了样线法和本方法的计算结果，并且与已有的调查成果做适当比较（表1）。

<table>
<thead>
<tr>
<th>研究区域</th>
<th>地图样带法</th>
<th>线状样带法</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>地图样带法</td>
<td>线状样带法</td>
</tr>
<tr>
<td></td>
<td>密度 (只/km²)</td>
<td>数量 (只)</td>
</tr>
<tr>
<td>塔什库尔干盘羊分布区</td>
<td>The argali distribution area in Taixi Reserve</td>
<td>0.347</td>
</tr>
<tr>
<td>阿克赛县狩猎场</td>
<td>Akesai international hunting ground</td>
<td>1.372</td>
</tr>
<tr>
<td>马鬃山自然保护区</td>
<td>Massan natural hunting ground</td>
<td>0.984</td>
</tr>
<tr>
<td></td>
<td>观察记录</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005年作者调查到434只，估计数量为1500～1700只</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007年Schaller等观察到443只，估计有1100只盘羊</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007年作者调查期间直接观察到127只</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000年Harris直接观察到199只</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007年作者调查期间直接观察到36只</td>
<td></td>
</tr>
</tbody>
</table>

通过比较，两种方法得出的调查结果差距较大，样线法计算出的结果总体上偏低。但就与在阿克赛县狩猎场的观察数据和报道的塔什库尔干盘羊分布区的观察数据和盘羊数量分析，地图样带法的计算结果更接近真实结果（Harris et al., 2001; Schaller et al., 2008; 赖鸣文等，2008），样线法的计算结果与直接观察结果接近甚至小于直接观察数据。因此，地图样带法的结果比样线法更为准确。

3 讨论

3.1 已有调查方法的问题

根据已有的研究成果，样线法、样带法是两种应用最普遍的方法，但两种方法在实际工作中都存在操作性和可行性的问题。样线法需要有一个动物到样线的探测函数才能计算出有效样线宽度，这种方法有较强的理论基础，在我国应

3.2 地图样带的优越性

地图样带法提供了一种调查范围的确定和面积计算方法，解决了已知调查方法中存在的样带范围确定和面积计算难题，也去除了调查中因为样线变化，动物分布点不同使得距离参数的确定和计算困难。地图样带法抛弃了传统样线，样带中的长度和宽度概念，没有固定样带的形状，完全根据实际调查的区域和地形地貌来确定样带的范围。该方法使样带的布设、实地调查、调查范围计算更具灵活性，机动性，更符合调查工作的需要。由于没有样带面积推算的过程，这样使的密度回归到了它本身的意，在实际工作中更具体价值。该方法与在者在塔什库尔干保护区的盘羊调查方法思想是一致的（黄文等，2008），区城在于地图样带采集的方法是基于栖息面积来计算密度，并通过GIS来进行样带的面积。而该方法考虑到众多基层保护人员的实际，通过地形图网来计算样带范围和计算样带面积，没有技术门槛，对广大基层野生保护工作者更具体可操作性。为进一步比较地图样带的优越性，现将地图样带法与截线法/样线法做如下比较（表2）。

<table>
<thead>
<tr>
<th>地图样带法与截线样法实用性比较</th>
<th>Table 2 Comparison in the applicability of map strip sampling and line transect sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>指标（Indicator）</td>
<td>样线法（Line transect sampling）</td>
</tr>
<tr>
<td>样本量（Sample number）</td>
<td>有要求（Required）</td>
</tr>
<tr>
<td>样线大小（Sample line size）</td>
<td>有长度和宽度（Length and width）</td>
</tr>
<tr>
<td>距离（Distance）</td>
<td>需要（Necessary）</td>
</tr>
<tr>
<td>调查路线（Survey line）</td>
<td>沿中线（Along midline）</td>
</tr>
<tr>
<td>样带边界（Sample border）</td>
<td>固定不能修正（Fixed and no change）</td>
</tr>
<tr>
<td>样带形状（Sample shape）</td>
<td>矩形或对称状多边形（Rectangle or symmetrical polygon）</td>
</tr>
<tr>
<td>距离计算（Calculation of distance）</td>
<td>与景观有密切联系（Relate to landscape）</td>
</tr>
<tr>
<td>距样带面积（Calculation of sample area）</td>
<td>固定或复杂（Fixed or complicated）</td>
</tr>
</tbody>
</table>

3.3 地图样带法的实用性

荒漠地区主要分布在我国的西北地区，青藏高原，主要的动有高原宽谷，山体庞大，起伏平缓，谷地开阔。这些地区植被类型简单，多由灌丛，草甸，草原，荒漠草原，灌石漠组成，仅在河谷地带有一些零星的小乔木，很少有这样的变化（中国科学院《中国自然区划》编辑委员会，1981）。基于其景观和植被特点，在这些地区调查用，沿河谷调查，两侧山脊线内的范围都在调查内；若沿山坡调查，视野范围更广。所以地图样带法非常适合调查范围内的野生动物调查。但若在高差山地地区采用这种方法效果就会受到影响，因为高山山地地区植物复杂，地形陡峭，调查者的视野狭窄，同时林区动物的形态特性也不一样，若用此方法来调查就可能影响调查结果，所以对高山山地地区的野生动物调查则需要研究新的方法。

3.4 地图样带法的准确性

地图样带法解决了样带确定难和计算难的问题，大大提高了调查的灵活性。尽管该方法得出的结果比样线得出的结果偏高，但相对更为准确。在实际工作中为保证结果的准确性，应遵从样带的布设，不要随意改变样带布设，不要以发现盘羊为样带起点，这样得出的结果就更能反映真实的种群数量。若在调查中随意改变路线，总是调查盘羊分布密集的区域，而且每条样带都发现盘羊为起点肯定会导致每个调查区域内都会有盘羊分布区，这样得出的结果结果也会偏高。本文在调查中提到样线法与样带法得出的结果偏低是调查样线宽度的下降。另外，抽样强度与结果的准确性也密切相关，阿塔克赛尔探区虽然分布于范围内，调查条
件较好，调查面积达 60%，调查数据对该方法和调查结果的支持充分。当然，本研究得出的结果只能说明在草原调查中该方法比样线法更严谨，不能充分说明该方法的准确性。仍然需要更多的工作来验证，特别是能对样线法、草带法的区别作进一步的考虑。

尽管该方法的可信度高，但仍然没有解决其数量问题，其报道的种群数量仍为估计值。

4 参考文献

