Some Factors Influencing GOT Activity in Giant Panda Seminal Plasma

ZHANG Ming1,2, XIAN Hong2, HOU Rong3, ZHENG Hong-pei1, ZHU Qing1

(1. College of Animal Science & Technology, Sichuan Agricultural University, Yaan, Sichuan Province 625014; 2. The Department of Human Reproduction and Sterility, Maternity Hospital in Chengdu; 3. The Key Laboratory of Reproduction and Conservation Genetic of Endangered Wildlife of Sichuan Province, Chengdu Research Base of Giant Panda Breeding)

Abstract: The objective of the study is to detect the activity of glutamic-oxaloacetic transaminase (GOT) in giant panda seminal plasma and to analyze the relationship among GOT activity and age, season or sperm quality. The results are as follows: The presence of GOT is found in all giant panda semen, the average activity is 194.89 ± 77.40 IU/100ml. Seminal GOT activity has highly negative correlation with sperm motility (r = -0.66, P < 0.01). As a whole, GOT activity rises with giant panda age increasing. GOT activity reduces at giant panda reproductive season.

Key words: giant panda (Ailuropoda melanoleuca); seminal plasma; glutamic-oxaloacetic transaminase (GOT)

材料与方法

1.1 大熊猫精液的采集与精浆的制备

受试大熊猫均来自成都大熊猫繁育研究基地，于2004年2-5月大熊猫繁殖季节，通过麻醉后直肠电刺激采精法采集大熊猫精液。5个体（表1）共采精19次。将采集的精液部分用 Ham's F-10 稀释后作常规精液品质分析，分析方法参考 Huang 等的方法[9]；其余离心分离精浆，所得精浆250 g离心10 min，取上清液分装后室温保存备用。

<table>
<thead>
<tr>
<th>表1 实验大熊猫基本情况</th>
<th>Basic information of giant panda in experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>大熊猫编号</td>
<td>出生日期</td>
</tr>
<tr>
<td>1号</td>
<td>1984年9月</td>
</tr>
<tr>
<td>2号</td>
<td>1992年7月</td>
</tr>
<tr>
<td>3号</td>
<td>1997年9月</td>
</tr>
<tr>
<td>4号</td>
<td>1998年9月</td>
</tr>
<tr>
<td>5号</td>
<td>1987年9月</td>
</tr>
</tbody>
</table>

1.2 精浆GOT的测定

天冬氨酸和α-酮戊二酸在37°C下在GOT催化下生成草酰乙酸和谷氨酸，反应生成的草酰乙酸与丙酮酸一样，可与2,4-二硝基苯肼反应，形成丙酮酸二硝基苯腙，在碱性溶液中显棕红色。再与同样处理的丙酮酸标准液进行比色，计算出其含量，以此测定转氨酶的活性。转氨酶活性为每毫升精浆与基质

收稿日期：2006-04-06 基金项目：国家“十五”科技支持大熊猫研究重点基金项目资助。 作者简介：张明（1975-），讲师，博士研究生，主要从事动物繁殖生物技术相关研究。
在37°C下作用60 min,生成1 μmol丙酮酸为1个酶活力单位[4]。
在半自动生化分析仪（Basic-70VB0358, France）上用2 mmol/l丙酮酸钠标准液制作标准曲线,根据标准曲线在半自动生化分析仪上直接读取各样品酶活力,方法参考白梦羽等[4]。

1.3 统计分析
对精浆中酶浓度进行F检验;进行酶含量和精液质量间的简单相关分析,并对相关系数进行t检验。年龄与月份和大熊猫精浆GOT活性的相关分析用Excel软件进行拟合。

2 结果分析

2.1 受试大熊猫精液品质常规分析
　　对5只受试大熊猫共成功采集精液19次,精液品质常规分析结果见表2。

<table>
<thead>
<tr>
<th>大熊猫编号</th>
<th>重复数</th>
<th>年龄(年)</th>
<th>精液品质 (10^9/ml)</th>
<th>精液品质 (10^9/ml)</th>
<th>精液品质 (10^9/ml)</th>
<th>精液品质 (10^9/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1号</td>
<td>5</td>
<td>20</td>
<td>2.25 ± 2.62</td>
<td>0.72 ± 0.1255</td>
<td>4.1 ± 0.82</td>
<td>60 ± 29.61</td>
</tr>
<tr>
<td>2号</td>
<td>5</td>
<td>12</td>
<td>3.43 ± 3.82</td>
<td>0.78 ± 0.1037</td>
<td>3.8 ± 0.57</td>
<td>48.75 ± 13.15</td>
</tr>
<tr>
<td>3号</td>
<td>4</td>
<td>7</td>
<td>1.51 ± 0.26</td>
<td>0.8625 ± 0.0479</td>
<td>4.25 ± 0.65</td>
<td>51 ± 33.94</td>
</tr>
<tr>
<td>4号</td>
<td>4</td>
<td>6</td>
<td>6.04 ± 9.22</td>
<td>0.8125 ± 0.075</td>
<td>4.17 ± 1.04</td>
<td>71 ± 4.24</td>
</tr>
<tr>
<td>5号</td>
<td>1</td>
<td>17</td>
<td>0.608</td>
<td>0.70</td>
<td>3.0</td>
<td>37.0</td>
</tr>
<tr>
<td>Mean ± S. D</td>
<td></td>
<td></td>
<td>3.12 ± 4.69</td>
<td>0.784 ± 0.1015</td>
<td>4.0 ± 0.73</td>
<td>55.1 ± 21.30</td>
</tr>
</tbody>
</table>

2.2 大熊猫精浆GOT活性

gt;0.25;0.05;0.25;0.05
对5号样品中GOT浓度检测结果见表3。从表3可以看出,所有获取的大熊猫精浆样品中均检测到了GOT的活性变化,活性最低仅109.53 ± 9.09 IU/100 ml,最高达452.04 ± 16.02 IU/100 ml,其平均活性为194.89 ± 77.40 IU/100 ml。

<table>
<thead>
<tr>
<th>大熊猫编号</th>
<th>2月</th>
<th>3月</th>
<th>4月</th>
<th>5月</th>
</tr>
</thead>
<tbody>
<tr>
<td>1号</td>
<td>291.77 ± 36.07</td>
<td>192.04 ± 37.20</td>
<td>203.0 ± 22.40</td>
<td>206.77 ± 16.08</td>
</tr>
<tr>
<td>2号</td>
<td>151.4 ± 16.03</td>
<td>220.20 ± 49.38</td>
<td>144.72 ± 19.68</td>
<td>452.04 ± 16.02</td>
</tr>
<tr>
<td>3号</td>
<td>109.53 ± 9.09</td>
<td>117.16 ± 8.74</td>
<td>137.26 ± 20.94</td>
<td>165.86 ± 36.58</td>
</tr>
<tr>
<td>4号</td>
<td>197.51 ± 16.15</td>
<td>164.74 ± 16.85</td>
<td>185.74 ± 15.22</td>
<td>139.44 ± 13.98</td>
</tr>
<tr>
<td>5号</td>
<td>--</td>
<td>211.48 ± 20.95</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

2.3 年龄与大熊猫精浆GOT活性的关系

不同年龄大熊猫精浆GOT活性变化见图1。

![图1 大熊猫精浆GOT活性的年龄差异](image)

图1 Seminal plasma GOT activity in different ages

精浆GOT活性的高低在不同年龄之间不存在显著的差异。从图1可以看出，随着年龄增加，大熊猫精浆中GOT活性有增加的趋势。本实验中5个个体GOT活性与年龄可以用4阶多项式（y = 0.1071x^4 - 5.681x^3 + 106.53x^2 - 821.16x + 2351.9）进行完全拟合，其决定系数 R^2 = 1。

2.4 繁殖季节与大熊猫精浆GOT活性的关系

不同月份大熊猫精浆GOT活性变化见图2。

![图2 大熊猫精浆GOT活性的月份差异](image)

图2 Seminal plasma GOT activity in different months

从月份上来看，在大熊猫发情旺盛季节（2、3、4月），精浆GOT活性相对较低，随繁殖季节的结束，5
月其活性有所上升，但差异不显著（P > 0.05）。本实验中 5 个股体 GOT 活性与月份可以用 3 阶多项式（

\[y = 10.66x^3 - 89.926x^2 + 231.28x \] ）进行拟合，其决定

系数 \(R^2 = 0.9992 \)。

2.5 大熊猫精浆 GOT 活性与精液质量的关系

将精浆 GOT 活性与精液质量进行相关分析，结果见表 4。

<table>
<thead>
<tr>
<th>表 4 GOT 活性与大熊猫精液各质量指标的相关分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>指标</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>GOT 活性 (IU/100ml)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

注：**表示达到 0.01 显著水平 (P < 0.01)。

从上表分析得到的相关系数结果来看，精浆中 GOT 的含量高低与精子活力存在极显著负相关 (r = -0.66, P < 0.01)；与精子运动状态和精子形态有一定的相关性，但未达到显著水平 (P > 0.05)。

3 讨论

精子尾部中段的线粒体轴是细胞呼吸链酶系系中的地方，当精子线粒体受到损害时，其酶链入精浆中，使精子呼吸链的酶系统失调，其能量代谢的氧化磷酸化过程中断，能量来源断绝，导致精子运动能力减弱甚至死亡。精子线粒体上的酶类很多，主要包括脱氢酶类和转移酶类，这些酶在精子发生和受精过程中都起着重要的作用，一些学者根据精浆中酶的变化来判断细胞膜在冷冻和解冻过程中损害的程度。可以衡量冷冻精子质量。Roychoughury 等（1975）在研究牛、羊精子中 GOT 时，发现经过冷冻休克后，GOT 活力显著增加，GOT 活性与解冻精子活力存在显著负相关，同时证明精浆中 GOT 活性的增加是线粒体受损所致。朱世海（1997）为了验证奶牛精液冷冻后酶的释放与精液品质之间的相关系，测定分析了西门塔尔牛精液 GOT 活性与精子活率和顶体完整率的相关性，结果表明，GOT 活性与精子活率呈显著负相关 (P < 0.05)，与顶体完整率呈极显著负相关 (P < 0.01)，说明 GOT 活性越高，精子活率和顶体完整率越低，精液品质下降。白梦羽等 (1994) 分析美羊公羊精液 GOT 浓度与精子质量指标相关性中也得出了与上述一致的结果。

本实验对大熊猫精浆 GOT 活性进行测定，发现大熊猫精浆存在 GOT 活性，其平均活性为 194.89 ± 77.40 IU/100 mL，GOT 活性表现出与精子活力的极显著负相关 (r = -0.66, P < 0.01)。与精子运动状态和精子形态有一定的相关性，但未达到显著水平 (P > 0.05)。此外，随着年龄增加，大熊猫精浆中 GOT 活性有增加的趋势；在繁殖季节，GOT 活性有降低的趋势。精浆的质量、年龄和繁殖季节，与精浆中 GOT 的含量有一定关系，为了进一步的获得 GOT 活性的变化规律或影响因素，需要对更多个体全年精浆中 GOT 活性进行检测。

4 参考文献

