光倒刺鲃的年龄与生长的初步研究

邹佩贞1,徐剑1,温海燕1,陈建荣1,钟良明2,罗秋洪2,吴育煌2
(1.韶关学院生物工程学院生物系,广东韶关 512005; 2.广东韶关市水产研究所)

摘要: 研究了光倒刺鲃(Spinibarbus hollandi)的年龄与生长规律, 结果表明: 光倒刺鲃鳞片年轮特征主要为疏密切塑, 体长与鱼长呈线性相关 $L = 44.44R - 11.69$, 体重与鱼长呈指数函数相关 $W = 0.0258L^{2.9125}$, 4 龄以前生长较快, 生长指数高, 体长指数高, 体长和体重的相对增长率大, 其生长规律可用 Von Bertalanffy 方程表达: $Lt = 67.3 \left[1 - e^{-(1+0.1388)}\right]$, $Wt = 5444.41 \left[1 - e^{-(1+0.1388)}\right]$. 体重生长曲线的拐点位于 $t = 5.678$, 拐点鱼长 $Lr = 45.313 cm$, 拐点体重 $Wr = 1660.885 g$。光倒刺鲃雌性一般在 3～4 龄性成熟, 雄鱼 3 龄性成熟。

关键词: 光倒刺鲃; 年龄; 生长

中图分类号: Q959.4 文献标识码: A 文章编号: 1000-7083(2007)03-0510-06

The Age and Growth of Spinibarbus hollandi Oshima

ZOU Pei-zhen1, XU Jian1, WEN Cai-yan1, CHEN Jian-rong1, ZHONG Liang-ming2, LUO Qin-hong2, WU Yu-xuan2
(1. Yingdong College of Biotechnology, Shaoguan University, Shaoguan, Guangdong Province 512005; 2. Shaoguan Fisheries Institute)

Abstract: The age is determined by the rings on scales. The results got from the study of Spinibarbus hollandi Oshima show that: (1) The main feature of annual-ring is loose, close and pattern. (2) The relationship between the body length and the scale radius is $L = 44.44R - 11.69$. The relationship between the body length and the weight is $W = 0.0258L^{2.9125}$. (3) The Spinibarbus hollandi Oshima has the relatively fast growth rate, high growth index and large relative growth rate of body length and weight under the age of four. And the body growth pattern described by Von Bertalanffy equation is; $Lt = 67.3 \left[1 - e^{-(1+0.1388)}\right]$, $Wt = 5444.41 \left[1 - e^{-(1+0.1388)}\right]$. (4) The inflexion point of body weight growth curve is; $t = 5.678$ years, $Lr = 45.313 cm$, $Wr = 1660.885 g$. (5) The females of Spinibarbus hollandi Oshima often get matured at the age of three to four, and the males matured at the age of three.

Key words: Spinibarbus hollandi Oshima; age; growth

光倒刺鲃(Spinibarbus hollandi Oshima)，又名青.React, 镗钟，青娘等，属鲤科，钯亚科, 倒刺钯属[1]。分布于长江以南各水系，是我国江河中体型较大的经济鱼类，具有体形好，肉质佳，食性杂，适应性强，生长快等优点。近年来国内市场对光倒刺鲃的需求量日益增多，是一种有着广阔市场前景的名优新种。目前有关光倒刺鲃的养殖学、人工繁殖等方面已有较多报道[2~4]。但对光倒刺鲃年龄与生长的研究则未见报道。本文就光倒刺鲃年龄与生长规律进行了初步研究，旨在为今后制定种质标准和开发人工养殖提供参考依据。

1 材料和方法

1.1 材料

2001～2003 年由韶关市水产研究所分别在北江支流的浈江韶关十里亭段、曲江翠山段和马江段收集光倒刺鲃标本共 117 尾。

1.2 方法

1.2.1 鳞片测量及年龄鉴定 对获得的样本进行生物学性状测定，每尾鱼摘取背鳍下侧线上的鳞片 5~7 片，作年龄鉴定。在低倍显微镜（×40）、连续变倍体视显微镜下鉴定年龄，选择形状规则、轮纹清晰的鳞片用于测量鳞径。

1.2.2 相关计算[5~6] 通过相关分析，拟合出光倒刺鲃的体长与鳞长、体长与体重的回归方程。各阶段生长指标由各年龄的平均值点求得，有关计算公式如下:

年增长量 = $V_T - V_I$
年相对增长量 = $(V_2 - V_1) / V_1 \times 100\%$
生长比速 = $\ln V_2 - \ln V_1$
生长常数 = $(\ln V_2 - \ln V_1) \times (t_2 + t_1) / 2$
生长指标 = $(\ln V_2 - \ln V_1) / V_1$
式中 V_1 和 V_2 分别为对应相邻年龄 t_1,t_2 的体长 L_1,L_2 或体重 W_1,W_2。

应用 Von Bertalanfy 的鱼类生长方程式：\(L_t = L_\infty \left[1 - e^{-k(t-t_0)} \right] \), \(m_t = m_\infty \left[1 - e^{-k(t-t_0)} \right] \) 拟合光倒刺鲃体长、体重生长参数。

数据分析和作图在 Excel 软件中运行。

2 结果与分析

2.1 年龄鉴定

2.1.1 鳞片的形态特征

光倒刺鲃鳞片前区埋在皮膜内，后区裸露，被上下鳞片覆盖部分为侧区。鳞片着生的部位不同，形状也不同，主要有方角形、椭圆形或圆形，以背鳍下、侧线和体侧鳞片较大且规则。鳞片基位即环片的中心位于前区，但是随着鱼体的生长，鳞片前、后区生长速度发生变化，鳞片的位置逐渐移向鳞片的后部。

鳞片的生长，前区较为规则且完整，后区退化，并被辐射沟所截断，形成一圈圈间断的瘤状突起。

2.1.2 年轮特征

光倒刺鲃的鳞片的年轮特征属疏密切切型 (图 3, 4)。春季温度较高，环境条件适宜，生长较为迅速，其环片的生长均匀且完整，环纹轮距较宽；冬季温度较低，环片生长变慢，不完整甚至停滞，被下轮生长快速且完整的环纹所切，形成年轮。伴随疏密切切的年轮特征，也可以发现少量环纹断裂、熔融、聚合现象 (图 5, 6)。其疏密现象在整个前区和侧区较为明显，切割现象则主要在侧区。后区在密环处形成细密的环状嵴，与疏环延伸形成瘤状突起具有明显的区别，分析鳞片后区结构，可以在年龄鉴定中起辅助作用。

在光倒刺鲃的鳞片中没有发现幼轮的现象。幼鱼时期，部分个体的年轮特征不明显，仅表现为不显著的疏密结构，并且其侧区环片增生，有时是上一年环片的自然延续，其区别是新生部分向外缘散开从而表现为稀疏。

![图 光倒刺鲃年轮](image)

1. 光倒刺鲃的鳞片，2. 新形成的年轮，3. 疏密切切型，4. 疏密切切型，5. 切割碎裂型，6. 疏密碎裂型

2.1.3 年轮形成时期

经分析不同年龄组各月的新年轮形成时间 (表 1)，光倒刺鲃年轮形成是在 3～9 月，高峰期是在 3～6 月，低龄鱼的年轮形成较早，一般在 3 月。而年龄越高，年轮形成越晚。一般在 6 月年轮大都已经形成。

2.2 光倒刺鲃的生长分析

光倒刺鲃生长的实测鳞径 R、体长 L、体重 W 见表 2。

2.2.1 体长与鳞径的关系

鱼类生长于年有密切关系，鳞片随体长增加而增大。以实测体长为横坐标，鳞径为纵坐标，绘出体长与鳞径的点构图 (图 1)，通过相关分析表明，体长与鳞径是显著的线性关系，用最小二乘法可以求出 a 和 b。拟合出的直线回归方程为：\(L = 44.44R - 11.69 \), \(n = 117, r = 0.9665 \)。式中 R 为鳞径 (cm), L 为体长 (cm)

2.2.2 体重与体重的关系

以实测体长为横坐标，体重为纵坐标，绘制体重与体长的点构图 (图 2)，通过相关分析表明，体重与体长呈显著的幂函数相关，拟合出幂函数曲线回归方程为：\(W = 0.0258L^{2.9125} \), \(n = 117, r = 0.9983 \)。式中 W 为体重 (g), L 为体长 (cm)，指数 b 值近似等于 3，说明光倒刺鲃的生长均匀，用上式反映体长与体重关系是恰当的。
表 1 光倒刺鲃新成轮形成时间

<table>
<thead>
<tr>
<th>年龄</th>
<th>项目</th>
<th>1月</th>
<th>3月</th>
<th>4月</th>
<th>5月</th>
<th>8月</th>
<th>10月</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>标本数</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>已形成新成轮数</td>
<td>0</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>新成轮出现率(%)</td>
<td>0</td>
<td>81.8</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>/</td>
</tr>
<tr>
<td>2</td>
<td>标本数</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>/</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>已形成新成轮数</td>
<td>0</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>/</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>新成轮出现率(%)</td>
<td>0</td>
<td>71.4</td>
<td>100</td>
<td>100</td>
<td>/</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>标本数</td>
<td>/</td>
<td>8</td>
<td>10</td>
<td>/</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>已形成新成轮数</td>
<td>/</td>
<td>7</td>
<td>9</td>
<td>/</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>新成轮出现率(%)</td>
<td>/</td>
<td>87.5</td>
<td>90</td>
<td>/</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>标本数</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>/</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>已形成新成轮数</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>/</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>新成轮出现率(%)</td>
<td>0</td>
<td>66.7</td>
<td>83.3</td>
<td>/</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>标本数</td>
<td>/</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>/</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>已形成新成轮数</td>
<td>/</td>
<td>1</td>
<td>2</td>
<td>/</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>新成轮出现率(%)</td>
<td>/</td>
<td>50</td>
<td>100</td>
<td>66.7</td>
<td>/</td>
<td>100</td>
</tr>
</tbody>
</table>

表 2 光倒刺鲃生长实际数据

<table>
<thead>
<tr>
<th>年龄</th>
<th>标本/尾</th>
<th>R/cm</th>
<th>L/cm</th>
<th>体重/g</th>
<th>年龄</th>
<th>标本/尾</th>
<th>R/cm</th>
<th>L/cm</th>
<th>体重/g</th>
<th>年龄</th>
<th>标本/尾</th>
<th>R/cm</th>
<th>L/cm</th>
<th>体重/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>0.417~0.6083</td>
<td>0.5059</td>
<td>4.3~14.7</td>
<td>9.72</td>
<td>/</td>
<td>1.7~87</td>
<td>36.4</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>0.5935~0.801</td>
<td>0.6826</td>
<td>8.9~28.0</td>
<td>19.17</td>
<td>8.9</td>
<td>89~280</td>
<td>153.8</td>
<td>117.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>0.8083~0.971</td>
<td>0.9309</td>
<td>27.3~34.0</td>
<td>29.96</td>
<td>10.8</td>
<td>360~920</td>
<td>527.8</td>
<td>374</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>1.08~1.318</td>
<td>1.1029</td>
<td>35.3~39.0</td>
<td>37.28</td>
<td>7.5</td>
<td>980~1123</td>
<td>1012.6</td>
<td>484.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>1.127~1.502</td>
<td>1.2113</td>
<td>38.6~44.1</td>
<td>41.01</td>
<td>3.8</td>
<td>1010~1245</td>
<td>1207.1</td>
<td>194.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图 1 体长与鳞径的关系

图 2 光倒刺鲃体长与体重关系

2.2.3 各龄组的体长退算 根据前面的体长和鳞长、体长与体重的回归式，退算各龄组的理论体长和体重，结果见表 3，依据各项生长指数的经验公式，得体长、体重增长的各项指数，见表 4、表 5。

从表 3 可以看出，各龄段按公式退算的平均理论体长比相应年龄实测平均体长小，这是因为退算体长是根据实际年龄计算的，而实际体长是在年龄形成后已有一定时间的生长，在轮年之外又有环片沉积。

以相对增长率和生长指数划分鱼类生长阶段能客观地反映生长特点。根据光倒刺鲃的性腺切片发现，雄鱼 $3 ~ 4$ 龄性腺成熟[7]，雌鱼 $3 ~ 4$ 龄性腺成熟[8]。从表 4 和表 5 可以看出光倒刺鲃 4 龄前为体长和体重生长阶段，生长旺盛，其体长和体重的相对增长率较大，生长常数较大，鱼的生长是很旺盛的。4 龄后为成鱼生长阶段，生长比较稳定，表现为相对增长率、生长常数变化较小。这一生长规律与 4 龄鱼进入性腺成熟存在对应关系。

2.2.4 生长方程式 Von Bertalanffy 在假定有机体的体重与体长立方成比例时，推算体长体重的生长方程分别为：

$$L_t = L_w \left(1 - e^{-k(t - w)}\right), \quad W_t = W_w \left(1 - e^{-k(t - w)}\right)$$

式中，L_t 和 W_t 分别表示 t 龄时的理论体长和体重，L_w 和 W_w 分别表示鱼体的渐进体长和渐进体重。
K 表示生长曲线的曲率，t_0 为理论生长起始年龄，b 为生长指数。

表 3 光倒刺鲱的实测体长与估算体长的比较

<table>
<thead>
<tr>
<th>年龄组</th>
<th>标本数</th>
<th>实测体长/cm</th>
<th>估算体长/cm</th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>L_4</th>
<th>L_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>9.72</td>
<td>10.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>19.17</td>
<td>0.37</td>
<td>18.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>29.96</td>
<td>11.53</td>
<td>19.48</td>
<td>29.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>37.28</td>
<td>11.89</td>
<td>18.55</td>
<td>29.81</td>
<td>37.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>41.01</td>
<td>9.35</td>
<td>17.79</td>
<td>30.03</td>
<td>37.23</td>
<td>41.07</td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td></td>
<td>10.79</td>
<td>18.64</td>
<td>29.68</td>
<td>37.32</td>
<td>41.07</td>
<td></td>
</tr>
</tbody>
</table>

t 检验：t = 0.685 < t_{0.01} = 4.604

表 4 光倒刺鲱体长相对增长率与生长指数

<table>
<thead>
<tr>
<th>年龄组</th>
<th>标本数</th>
<th>估算体长/cm</th>
<th>体长相对</th>
<th>体长生长指数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>增长率/%</td>
<td>生长比速</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>10.79</td>
<td>72.75</td>
<td>0.546</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>18.64</td>
<td>59.23</td>
<td>0.465</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>29.68</td>
<td>25.74</td>
<td>0.23</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>37.32</td>
<td>10.05</td>
<td>0.095</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>41.07</td>
<td>9.09</td>
<td></td>
</tr>
</tbody>
</table>

表 5 光倒刺鲱体重相对增长率与生长指数

<table>
<thead>
<tr>
<th>年龄组</th>
<th>标本数</th>
<th>估算体重/g</th>
<th>体重相对</th>
<th>体重生长指数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>增长率/%</td>
<td>生长比速</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>26.32</td>
<td>391.49</td>
<td>1.593</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>129.36</td>
<td>287.59</td>
<td>1.354</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>501.38</td>
<td>98.85</td>
<td>0.688</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>997.01</td>
<td>29.51</td>
<td>0.258</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>1291.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

根据光倒刺鲱推算体长与体重的相关方程，其回归系数 b 接近于 3，可用 Von Bertalanffy 描述光倒刺鲱的生长规律。

根据表 3 推算的各年龄平均体长，用最小二乘法分别求出 Von Bertalanffy 方程式各参数：L∞ = 67.3 cm，K = 0.208，t_0 = 0.1338 年，然后由体长体重关系式求得 W = 5441.44 g，将上述参数代入 Von Bertalanffy 方程，得光倒刺鲱体长体重生长方程分别为：

\[
L_t = 67.3 \left[1 - e^{-0.208(t-0.1338)} \right], \quad n = 117
\]

\[
W_t = 5441.44 \left[1 - e^{-0.208(t-0.1338)} \right]^{3/2}, \quad n = 117
\]

据生长方程分别绘制体长和体重生长曲线，见图 3 和图 4。

由图 3 可以看出，体长生长曲线为一条不具拐点的曲线，开始时上升比较快，但随着年龄的增加而逐渐减慢，并逐渐趋向近似体长。由图 4 可见体重生长曲线为一条不对称的 s 型具拐点的曲线，随年龄增加而由慢到快再慢，并趋向渐进体重。

2.2.5 生长速度和生长加速度 上述体长和体重

![图3 光倒刺鲱体长生长曲线](image3.png)

生长方程反映了光倒刺鲱生长过程中的总和，为了探讨各龄生长过程的变化特征，可进一步采用生长速度和加速度方程进行分析。将(1)和(2)式对 t 求一阶、二阶导数，便得到光倒刺鲱体长、体重生长速度和加速度方程。

体长生长速度方程:

\[
dL/dt = 13.58e^{-0.208(t-0.1338)}, \quad n = 117
\]

体重生长速度方程:

\[
dW/dt = 3294.25e^{-0.208(t-0.1338)}\left[1 - e^{-0.208(t-0.1338)} \right]^{3/2}, \quad n = 117
\]

体长生长加速度方程:

```plaintext

```
体重生长加速度方程：
$$
\frac{d^2L}{dt^2} = -2.74e^{-0.208(1-0.1338)}n = 117
$$

根据上述 4 个方程，分别做出体长和体重生长速度、生长加速度曲线，见图 5～8。由图 5、7 可见，
光倒刺鲫的体长生长速度和加速度不具拐点，生长速度随年龄增加而递减，开始降低较快，逐渐减缓最后趋近于零；生长加速度始终为负值，随年龄增加而增大，表明体长生长速度的递减速度逐渐降低。

由图 6、8 可知，光倒刺鲫的体重生长速度和加速度都有拐点，拐点年龄 $t_1 = 5.678$，拐点体重 $L_r = 45.313$ cm，拐点体重 $W_r = 1660.885$ g。拐点年龄前体重增长速度为递增阶段，但递增速度逐渐下降，5.678 龄时，体重增长速度为最大值，生长加速度为零。5.678 龄以后体重增长速度和加速度随年龄增加逐渐下降，且递减速度增加，约 10 龄时，体重生长加速度降至最低点，后逐渐上升，表明体重增长速度进一步下降，递减速度减缓，个体进入衰老期。此后，体长和体重趋向渐近值，而生长速度和加速度渐趋近于零。

3 讨论

3.1 新年轮形成时间

光倒刺鲫新年轮形成时间，从总体上看，持续时间较长，一定程度上反映了光倒刺鲫与其生长地理环境相关，北江流域地处亚热带，全年平均水温在 13～30℃之间，全年最低温度在 12 月至次年的 1 月，2 月中旬水温回升，光倒刺鲫摄食量增加，生长随之加快，年龄亦开始形成。而从不同年龄组的年轮形成看，低龄组年轮主要在 3～4 月形成，高龄组的主要在 3～6 月形成，个别推迟到 8 月，这可能与其繁殖有一定的关系，光倒刺鲫的繁殖期为 5～9 月，性成熟的高龄组鱼在产卵前，其主要能量用于性腺发育，体长和体重生长几乎停止。

3.2 生长拐点

鱼类的生长拐点，一般认为分性成熟拐点和衰老拐点。前者从性未成熟转入性成熟，后者则从壮期转人衰老期。具有后者特点的鱼类主要分布在热带和亚热带水域，由于水温较高，在衰老前生长迅速，进入衰老期后，生长就逐渐减慢。光倒刺鲫生长拐点在 5.678 龄，性成熟拐点年龄 （3～4 龄），应属于衰老拐点。这有利于其增大繁殖力，保
4 参考文献

