Expression of KAI1/CD82 in Mouse Endometrium during Early Pregnancy

HE Ming-zhong, WANG Huan-ying, TAN Dong-mei, TAN Yi
(Laboratory Animal Center, Chongqing University of Medical Sciences, Chongqing 400016)

Abstract: Objective To further explore the similarity between embryo implantation and tumor metastasis. Methods We use RT-PCR and immunohistochemistry to detect the expression of KAI1/CD82 mRNA and protein in mice endometrium during days 1–8 of pregnancy. Result In early pregnant uterus, the expression of KAI1/CD82 mRNA increased gradually and, coupled with the increased level and range of the protein expression. Conclusion The expression of KAI1/CD82 mRNA and its protein were under dynamic changes in mice uterus during early pregnancy period, which indicate that KAI1/CD82 maybe one of the modulating factors in controlling the accurate invasion of embryo into endometrium.

Key words: KAI1/CD82; early pregnancy; endometrium
代，人们注意到正常胚胎植入过程中滋养层细胞对子宫内膜的侵入行为与肿瘤细胞的侵袭转移过程存在大量相似之处。表现病理生理过程、细胞增殖与分裂、基因表达（癌基因/抑癌基因、异味激素、异味间质酶、胚胎起源等）细胞凋亡、免疫逃逸、侵袭性及新生血管形成等方面，两者存在共同的侵袭和调节机制。二者的比较研究越来越多地引起胚胎学和肿瘤学这两个研究领域的关注。二者的交叉极大地拓宽了各自的研究视野。并为胚胎着床机理的研究提供新的方向。本实验从胚胎植入与肿瘤侵袭转移相似为切入点，采用免疫组化和RT-PCR技术，观察KAI1/CD82 mRNA和蛋白在妊娠1～8天小鼠子宫内膜组织的表达。研究结果将为阐明胚胎着床的分子机理提供新的实验资料。

1 材料与方法

1.1 实验材料

7～8周龄，体重20～25 g的清洁级 NIH小鼠由重庆医科大学实验动物中心提供。组织标本分别取自怀孕1～8天小鼠的子宫组织。

1.2 主要试剂

兔抗CD82单克隆抗体购自美国Santa Cruz公司产品，过氧化物酶标记的兔抗鼠兔素染色试剂盒(SP-kit)购自北京中山生物技术有限公司。DAB酶底物显色试剂盒购自福州迈新生物技术开发公司，小鼠脱胎离心式组织总RNA提取试剂盒购自上海华舜生物工程有限公司，RT-PCR试剂盒、目标基因CD82及内对照基因β-actin的PCR引物由TaKaRa Biotech提供。

1.3 标本及切片的制备

将小鼠脱颈处死，无菌分离怀孕1～8天子宫组织以及5～8天胚胎植入点组织，称取35～40 mg用于提取总RNA。其余组织用40 g/L多聚甲醛固定液固定，按常规石蜡包埋，6～7 μm厚连续切片，用于免疫组化检测。

1.4 免疫组化检测

采用SP免疫组化化学方法。组织切片常规脱蜡、水化。按SP-kit操作说明书进行检测。CD82/KAI1单抗1:400倍稀释，以试剂公司提供的阳性对照照片作为阳性对照，以PBS代替-抗作为阴性对照。镜下见细胞浆或胞膜被染为棕黄色者为阳性染色。

1.5 RT-PCR

取妊娠各阶段使用说明分别提取小鼠不同组织各阶段的子宫组织、孕1～8天子宫组织、5～8天植人点组织样本总RNA。CD82基因的上游引物为5'-ACCATTTACCCTGCCCT-3'，下游引物为5'-TCAGTACTTGCGGACCTG-3'，扩增片段的大小为294 bp。β-actin基因的上游引物为5'-AGCCAGAAGTCAGGACATC-3'，下游引物为5'-CTCTACACTGTTGCTGGTGGAAG-3'，扩增片段的大小为228 bp。逆转录聚合酶反应的条件为30°C 10 min，42°C 30 min，99°C 5 min，5°C 5 min。CD82的PCR反应条件为94°C 2 min，94°C 30 s，58°C 30 s，72°C 1 min，循环35次，72°C 5 min。β-actin的PCR反应条件为94°C 2 min，94°C 30 s，55°C 30 s，72°C 1 min，循环30次，72°C 5 min。PCR产物经2%琼脂糖凝胶电泳，检测结果用凝胶成像扫描仪分析。

2 结果

2.1 KAI1/CD82蛋白在妊娠早期小鼠子官内膜(蜕膜)的表达

KAI1/CD82蛋白表达于细胞的胞浆和胞膜。免疫组化结果显示，孕D1～D8小鼠子宫内层组织中，KAI1/CD82蛋白表达的部位相似。在孕D1-D8子宫内膜间皮细胞和腺上皮细胞呈阳性表达(见图版1)。孕D1和D2子宫内膜质细胞为阴性表达，孕D3子宫内膜间皮细胞下的基质细胞出现微弱阳性表达，孕D4子宫内膜基质细胞为散在的阳性表达，孕D5、D6子宫蜕膜细胞多数为阳性表达。孕D3～D8子宫内膜(蜕膜)基质细胞表达KAI1/CD82蛋白的细胞数量逐渐增多，孕D3～D8小鼠子宫肌层和浆膜细胞也有一定量的表达。

2.2 KAI1/CD82 mRNA在妊娠早期小鼠子宫内膜(蜕膜)的表达

RT-PCR结果见图版2：D1～D8小鼠子宫组织中，KAI1/CD82 mRNA均有表达。KAI1/CD82基因在孕D1、D2表达量微弱，从孕D3开始表达增加，并持续增高，至孕D6表达最多，且在子宫组织者端的表达量较子宫间组织表达要高。

3 讨论

KAI1/CD82对肿瘤转移的抑制作用可能与其
对细胞侵袭力、运动及粘附的调节有关。而肿瘤形成与胚胎发育有许多相似之处，这主要表现在肿瘤细胞与早期胚胎细胞均为发育学上“年轻”的细胞，具有强大的生命力和旺盛的分裂、增殖、生长与分化能力；在胚胎性基因表达、增殖与分化、侵袭特性、血管形成及调节机制、免疫逃逸机制等各方面具有相似的特性，特别是具有活跃的侵袭细胞外基质能力。胚胎着床的关键步骤是胚胎滋养层细胞对子宫内膜的适度侵入，这一过程受到母体因素和滋养层细胞本身的精确调控，侵入不足可导致早期流产或形成胎盘着床，诱发妊娠高血压综合症；异常增生、过度侵入则有发生妊娠滋养细胞肿瘤的风险。在胚胎着床过程中，绒毛外滋养层细胞（EVT）及侵袭转移的肿瘤细胞表面MHC I类分子表达下降或缺失，从而逃避T细胞的免疫监视；同时表达HLA-G、HLA-E等非经典的HLA I类分子来避免NK细胞的免疫攻击。肿瘤细胞及植入期胚胎通过自分泌、旁分泌、分别分泌表达免疫抑制性因子如转化生长因子-β（TGF-β）、白介素-10（IL-10）、血管内皮细胞生长因子（VEGF）等，可抑制T细胞的分化，并下调T细胞粘附或（和）共刺激分子的表达，诱导特异性的免疫耐受。肿瘤细胞和胚胎细胞均可通过介导的母体细胞的凋亡来逃避免疫细胞的攻击。

本实验发现，植入前KA11/CD82蛋白质在小鼠子宫内膜基质细胞少量表达，植入时小鼠子宫蜕膜细胞表达上调，提示在滋养层细胞侵袭子宫内膜前，子宫内膜可能通过表达KA11/CD82蛋白，为抗滋养层细胞的侵袭做准备。而在孕D5～D8胚胎植入过程中，KA11/CD82蛋白在多数子宫蜕膜细胞上调表达，其蛋白在子宫内膜腔上皮和腺上皮细胞均有阳性表达，以后基质细胞表达的量和范围逐渐增强，即妊娠早期，子宫内膜基质细胞（蜕膜细胞）中，KA11/CD82可能参与了滋养层细胞侵袭子宫内膜的调节，提示KA11/CD82在子宫内膜抗滋养层细胞侵袭中起重要作用，可能参与子宫内膜对抗滋养层细胞侵袭的调节。KA11/CD82 mRNA在孕D1～D8小鼠子宫组织中的动态表达，与其蛋白表达情况一致，植入前小鼠子宫组织少量表达，以后逐渐增多，且在胚胎植入点组织的表达显著高于子宫组织的表达，提示KA11/CD82在子宫内膜抗滋养层细胞侵入中起重要作用，推测可能参与精确调节胚胎对子宫内膜的侵袭，是滋养层细胞“有限”侵袭调控的分子机制之一。

4 参考文献

图1 孕1～8天小鼠子宫组织中KAI1/CD82蛋白的表达
Fig. 1 Result of KAI1/CD82 protein expressed in mouse uterus during pregnancy D1～D8

图2 孕1～8天小鼠子宫组织中KAI1/CD82 mRNA的表达
(D5、D6、D7、D8为子宫间质，d5、d6、d7、d8为胚胎植入点组织)
Fig. 2 RT-PCR results of KAI1/CD82 mRNA expressed in mouse uterus during pregnancy D1～D8