本文属于动物学领域，讨论了桓仁林蛙与东北林蛙蝌蚪的形态特征及比较。作者通过观察和实验，发现桓仁林蛙的蝌蚪在外形上与东北林蛙蝌蚪有显著差异。关键词包括：桓仁林蛙、东北林蛙、蝌蚪、形态及两栖类。

Description and Comparison of Tadpoles of *Rana huanrenensis* and *R. dybowskii*

WANG Jing-qi, LI Pi-peng, LU Yu-yan, DONG Jing-jun, ZHOU Zheng-yun, YU Feng-lan

(Herpetodiversity Research Group, Shenyang Normal University, Shenyang 110034)

Abstract: *Rana huanrenensis* lives in the same region with *Rana dybowskii* in northeast China, but its distribution is restricted. The morphological characteristics of the *Rana huanrenensis* and *Rana dybowskii* tadpoles were described in this article, and some morphological measurements were taken to compare the differences between these two species. The conclusion is that there are some significant differences between them in the body color and shape, tail shape and the ratio of length or width of some parts to the length of body. The tadpole of *Rana huanrenensis* is a little similar to the stream-type of tadpoles with depressed body and that of *Rana dybowskii* is a typical pond-type of tadpoles.

Key words: *Rana huanrenensis*; *Rana dybowskii*; tadpoles; morphology; Anura.

蝌蚪（tadpole）是大多数（约四分之三）无尾两栖动物个体发育的一个特殊时期[12]，其中多数物种蝌蚪生活在水环境中的时间比成体要长久，因此比成体更易采集。利用蝌蚪样本可以更快捷的监测评估当地的两栖动物多样性。但首先需要对蝌蚪的正确鉴定和区分。长期以来，对蝌蚪的研究没有像对成体那样受到两栖动物学者的重视，至今大约只有三分之一物种的蝌蚪被描述，有关蝌蚪的参考资料，检索表和种内变异的数据比较缺乏。因此，急需对一些物种的蝌蚪进行观察和描述[13]。另外，一些在分类地位上存在疑问的物种，蝌蚪的形态特征可以提供有效的证据[5,6]。

1 观察材料及方法

观察的蝌蚪包括辽宁桓仁的桓仁林蛙蝌蚪、辽宁桓仁和吉林抚松的东北林蛙蝌蚪。桓仁林蛙和桓仁的东北林蛙蝌蚪为野外采集的标本用于在实验室孵化、抚松的东北林蛙蝌蚪为直接在野外采集并
固定的保存标本。蝌蚪饲养于盛有 1.5 L 静置过夜的自来水的饲养箱，箱大小为 260 × 175 × 160 mm。每隔一天换一次水，饲喂以蔬菜叶和煮熟的蛋黄。

蝌蚪用 10% 的福尔马林溶液固定，解剖镜下观察。蝌蚪发育分期依据 Gosner (10) 的分期标准。选取第 29 期（侧指状肢芽期）及第 36 期（第三指分离开）的蝌蚪测量其相关的形态学量，并做 t 值检验。蝌蚪测量数据于统计行计算机程序，标准差及显著水平参考 McDiarmid & Altig (1999)、刘承钊和胡永庆 (1961)。

2 蝌蚪的形态描述

2.1 桓仁林蛙蝌蚪（图，A）

侧视，身体呈扁圆形，腹部较平，身体后端高度大于前端。体长占全长的 38%，体长约为体宽的 1.5 倍，体高的 2.1 倍，体宽约为体高的 1.3 倍。

背视，头部近三角形，吻端钝圆，腹部近似长方形，整个身体呈子弹形；鼻孔和眼均位于背侧。侧面观鼻孔开口于吻端与眼之间，鼻间距小于眼间距；在身体外层透明的薄膜下，鼻基部向上隆起，鼻孔开口于隆起的前端顶部，横向朝前下方；眼小，黑色，扁圆球状，朝向两侧，稍向上方倾斜；出水管透明，位于身体左侧中央，附着于体壁，基部宽于端部，开口朝向后上方。肛管位于尾下鳍的右侧，与尾下鳍合为一体，外观呈卵状，开口朝向后下方。

口器位于身体腹面前端，唇齿式为 I : 3–3/Ⅲ: 1–1 或 I : 2–2/Ⅱ: 1–1，唇齿小，黑色，细杆状，排列紧密；上唇有外排细齿最长，内排细齿最短，下唇有内排细齿最长，外排细齿最短；每排细齿从中间到两端逐渐减少；下唇有外排较其内的第二排短，第三排最长。唇凸下缘呈圆缺或圆柱状，半透明或乳白色，游离端尖锐或呈半球状，排列紧密，口角副乳突较大，内外两行，至下唇中部合成一行，上唇无乳突。上唇呈短卵形，上唇呈弧形，中间部分较厚，朝下弯曲，下唇呈“V”形，两瓣部分被上唇覆盖。上唇游离端边缘密布极小的锯齿状细齿。

尾长约体长的 1.6 倍，尾在中部最高，尾鳍呈弧形凸起，尾上鳍稍高于是下尾鳍，尾末端钝圆；尾鳍从尾基部开始逐渐变细，尾鳍的下缘接近水平，上缘向下倾斜，尾鳍末端非常尖锐，与吻端位于同一水平面；尾中线及尾鳍节都明显。

生活状态的蝌蚪身体背面全部为黑色，腹面灰黑色，半透明，可见白色的小肠；尾肌灰黑色，尾鳍单透明，密布细小的黑点。

2.2 桓仁产北林蛙蝌蚪（图，B）

侧视，身体呈卵圆形，身体后端高度大于前端，体长占全长的 39%，体长约为体宽的 1.5 倍，体高的 1.8 倍，体宽约为体高的 1.2 倍。

背视，身体呈卵圆形。吻端钝圆，鼻、眼均位于面前。鼻位于吻端与眼之间的中间位置，鼻间距小于眼间距；在身体外层透明的薄膜下，鼻呈上窄下宽的管状，凸出于周围皮肤，鼻基部皮肤黑色素较多，鼻孔开口于透明薄膜上，圆形，朝向斜前方。眼小，黑色，扁圆球状，晶状体明显，朝向两侧，稍向上方倾斜；出水管透明，位于身体左侧中央，附着于体壁，基部宽于端部，开口朝向后上方。肛管位于尾下鳍的右侧，与尾下鳍合为一体，外观呈卵状，开口朝向后下方。

口器位于身体腹面前端，唇齿式为 I : 3–3/Ⅲ: 1–1 或 I : 2–2/Ⅱ: 1–1，唇齿小，黑色，细杆状，排列紧密，上唇最外面的一排细齿最长，下唇最里面的一排细齿最长，每排细齿从中间到两端逐渐减少；唇凸下缘呈圆缺或圆柱状，半透明或乳白色，游离端尖锐或呈半球状，排列紧密，口角副乳突较大，内外两行，至下唇中部合成一行，上唇无乳突。上唇呈短卵形，上唇呈弧形，中间部分较厚，朝下弯曲，下唇呈“V”形，两瓣部分被上唇覆盖。上唇游离端边缘密布极小的锯齿状细齿。

尾长约体长的 1.6 倍，尾在中部 1/3 的一段最高，尾鳍呈弧形凸起，尾上鳍稍高于是下尾鳍，尾末端钝圆；尾肌从尾基部开始逐渐变细，向下倾斜，尾肌末端非常尖锐，位于吻端水平面之下；尾中线较明显，位于尾肌中央；尾肌肌节较明显，向后逐渐模糊。

生活状态的蝌蚪身体前半部分深灰色，后半部分黑色，黑色的背中线从两眼之间向前延伸至鼻后，腹面透明，可见内脏；尾肌深灰色，密布细小的黑点，上部多于下部；尾鳍半透明，也有细小的
2.3 桓仁林蛙蝌蚪（图，C）

侧视，身体呈卵圆形，身体后端高度大致前
端，体长约占全长的35%，体长约为体宽的1.5
倍，体高的1.7倍，体宽约为体高的1.1倍。

背视，身体呈卵圆形，吻端钝圆；鼻、眼均位
于背面。鼻位于吻端与眼之间的中间位置，鼻间距
小于眼间距；在身体外层透明的薄膜下，鼻呈上窄
下宽的管状，凸出于周围皮肤，鼻基部皮肤黑色素
较多，鼻孔开口于透明薄膜上，圆形，朝向斜向上
方。眼小，黑色，扁圆球状，晶状体明显，朝向两
侧，稍微向上倾斜；出水管半透明，位于身体左侧
中部，基部宽于端部，末端附着于体壁，开口朝向
后上方。肛管位于尾下鳍的右侧，与尾下鳍合为一体，
外观呈槽状，开口朝向后下方。

口器位于身体腹面前端，唇齿式为1 : 3 – 3 /Ⅲ
: 1 - 1 或 1 : 2 – 2 /Ⅲ: 1 - 1，唇齿小，黑色，细杆
状，排列紧密，上唇最外面的一排细齿最长，下唇
最里面的一排细齿最短，每行细齿从中间向两端逐
渐减小；唇乳突呈圆锥或圆柱状，半透明或乳白色，
游离端尖锐或呈半球状，排列紧密，口角有乳突
较短，内外两行，至下唇中部合成一行，上唇无
乳突。颚部黑色，上颚部呈斜形月，朝下弯曲，下
颚部呈“V”形，几乎全部被上颚部覆盖。颚部游
离端边缘密布极小的锯齿状细齿。

尾长约为主体的1.8倍，尾在中间处最高，尾
鳍呈弧形凸起，尾上鳍稍高于尾下鳍，尾末端钝
圆；尾肌整体稍向上弯曲，尾肌前四分之一处最
高，并且高于基部，尾肌末端非常尖锐，位于吻端
水平面之上或与吻端处于同一水平面；尾中线明
显，位于尾肌中上部；尾肌节明显，下部肌节明显
长于上部的。

生活状态的蝌蚪身体前半部分棕色，后半部分
黑色，棕色的背中线从两眼之间向前延伸至鼻
后，腹面透明，可见内脏；尾肌棕色，密布细小的
黑点，上部多于下部；尾鳍半透明，也有细小的黑
点，外观呈浅棕色。

3 蝌蚪形态学度量及t检验

3 种蝌蚪各取6只，测其相应的形态学度量，
求得平均值（表1），并选取几项反映体型特征的
度量与体长之比（表2所示）作t检验，比较结果
如下。

| 表1 桓仁林蛙蝌蚪及东北林蛙蝌蚪的度量（单位：mm） |
|-----------------|-----------------|-----------------|-----------------|
| 桓仁林蛙 | 东北林蛙 | 东北林蛙 |
| | 29期 | 36期 | 29期 | 36期 | 29期 | 36期 |
| 全长 | 19.1±0.08 | 26.97±1.73 | 26.85±0.99 | 31.26±1.57 | 34.63±2.97 | – |
| 体长 | 7.22±0.31 | 9.44±0.6 | 8.05±0.47 | 11.56±0.5 | 12.26±0.85 | – |
| 体宽 | 4.56±0.21 | 5.54±0.28 | 5.41±0.34 | 8.22±0.7 | 8.27±0.70 | – |
| 体高 | 3.53±0.23 | 4.17±0.44 | 4.48±0.43 | 6.75±0.52 | 7.39±0.77 | – |
| 尾长 | 11.88±0.82 | 17.53±1.23 | 12.8±0.75 | 19.69±1.2 | 22.37±2.18 | – |
| 后肢长 | 0.79±0.05 | 3.32±0.48 | 0.63±0.03 | 3.26±0.32 | 0.94±0.05 | – |
| 尾肌高 | 1.46±0.15 | 2.20±0.3 | 1.47±0.04 | 2.64±0.15 | 1.82±0.15 | – |
| 尾肌宽 | 1.60±0.12 | 2.40±0.3 | 2.08±0.15 | 2.91±0.08 | 2.62±0.17 | – |
| 咀出水管长 | 4.84±0.16 | 6.34±0.49 | 5.32±0.31 | 7.39±0.21 | 8.25±0.66 | – |
| 肛肛距 | 8.35±0.53 | 11.55±0.77 | 8.97±0.63 | 14.54±0.69 | 14.54±1.03 | – |

注：抚松产东北林蛙没有采到36期标本。
表 2 29 期桓仁林蛙蝌蚪及东北林蛙蝌蚪各项量度与体长的比值

<table>
<thead>
<tr>
<th></th>
<th>桓仁林蛙</th>
<th>东北林蛙（桓仁）</th>
<th>东北林蛙（抚松）</th>
</tr>
</thead>
<tbody>
<tr>
<td>体宽/体长</td>
<td>0.63±0.01</td>
<td>0.67±0.03</td>
<td>0.67±0.02</td>
</tr>
<tr>
<td>体高/体长</td>
<td>0.49±0.03</td>
<td>0.56±0.03</td>
<td>0.60±0.03</td>
</tr>
<tr>
<td>尾长/体长</td>
<td>1.64±0.07</td>
<td>1.59±0.12</td>
<td>1.82±0.08</td>
</tr>
<tr>
<td>后肢长/体长</td>
<td>0.11±0.00</td>
<td>0.08±0.01</td>
<td>0.08±0.01</td>
</tr>
<tr>
<td>尾基宽/体长</td>
<td>0.20±0.02</td>
<td>0.18±0.01</td>
<td>0.15±0.01</td>
</tr>
<tr>
<td>尾肌高/尾长</td>
<td>0.22±0.01</td>
<td>0.26±0.02</td>
<td>0.21±0.01</td>
</tr>
<tr>
<td>咽出水管径/体长</td>
<td>0.67±0.03</td>
<td>0.66±0.02</td>
<td>0.67±0.02</td>
</tr>
<tr>
<td>吻肛距/体长</td>
<td>1.16±0.05</td>
<td>1.11±0.04</td>
<td>1.19±0.03</td>
</tr>
</tbody>
</table>

3.1 桓仁林蛙蝌蚪和桓仁产东北林蛙蝌蚪的比较

桓仁林蛙蝌蚪的体宽和体高分别为体长的 63% 和 49%，而桓仁产东北林蛙蝌蚪分别为 67%、56%，差异显著和极显著，说明在此发育时期，桓仁林蛙蝌蚪的体形比桓仁产东北林蛙蝌蚪要狭长一些，流线型更明显，游泳时受水的阻力更小。桓仁林蛙蝌蚪的尾肌宽和尾肌高分别为体长的 20% 和 22%，而桓仁产东北林蛙蝌蚪分别为 18%、26%，差异显著和极显著，这与两种蝌蚪所栖息的环境有关，但尾肌的宽、高与产生的动力之间的关系需要进一步研究。桓仁林蛙蝌蚪的后肢长为体长的 11%，而桓仁产东北林蛙蝌蚪仅为 8%，差异显著，说明在此发育时期，桓仁林蛙蝌蚪的后肢相对长度大于桓仁产东北林蛙蝌蚪。

3.2 桓仁林蛙蝌蚪和抚松产东北林蛙蝌蚪的比较

桓仁林蛙蝌蚪的体宽和体高分别为体长的 63% 和 49%，而抚松产东北林蛙蝌蚪分别为 67%、60%，差异显著，说明在此发育时期，桓仁林蛙蝌蚪的体形比抚松产东北林蛙蝌蚪要狭长一些，流线型更明显，特别是体高与体长比明显小于抚松产东北林蛙蝌蚪，游泳时受水的阻力更小；桓仁林蛙蝌蚪尾长和尾肌宽分别为体长的 1.64 倍和 20%，而抚松产东北林蛙蝌蚪分别为 1.82 倍和 15%，差异显著，说明此发育时期抚松产东北林蛙蝌蚪的相对长度大于桓仁林蛙蝌蚪，但桓仁林蛙蝌蚪的尾肌相对要强壮一些；桓仁林蛙蝌蚪的后肢长为体长的 11%，而抚松产东北林蛙蝌蚪仅为 8%，差异显著，说明在此发育时期，桓仁林蛙蝌蚪的后肢相对长度大于抚松产东北林蛙蝌蚪。

3.3 桓仁产东北林蛙蝌蚪和抚松产东北林蛙蝌蚪的比较

桓仁产东北林蛙蝌蚪的体高为体长的 56%，而抚松产东北林蛙蝌蚪为 60%，差异显著，说明在此发育时期，桓仁产东北林蛙蝌蚪的体高小于抚松产东北林蛙；桓仁产东北林蛙蝌蚪尾长和尾肌宽、尾肌高分别为体长的 1.59 倍和 18%、26%，而抚松产东北林蛙蝌蚪分别为 1.82 倍和 15%、21%，差异显著，说明此发育时期抚松产东北林蛙蝌蚪的相对长度大于桓仁产东北林蛙蝌蚪，但桓仁产东北林蛙蝌蚪的尾肌相对要强壮得多；桓仁产东北林蛙蝌蚪的吻肛距为体长的 1.11 倍，而抚松的东北林蛙蝌蚪为 1.19 倍，差异显著，说明在此发育时期，桓仁产东北林蛙蝌蚪的吻肛管的开口位置比抚松产东北林蛙蝌蚪前靠。

4 讨论

4.1 体型的比较

在自然环境中，东北林蛙蝌蚪大多生活于相对静止的水域，而桓仁林蛙蝌蚪则生活于流动的水域，需要有更适用于游泳的体型和更强的游泳能力，以便能在流动的水中更好的捕食和活动。

因而，桓仁林蛙蝌蚪的体型比东北林蛙蝌蚪要狭长一些，流线型更明显，而且腹面较平，身体较扁，更适合在水底的卵石间隙中游动或隐藏，也可以更牢固的附着于水底或石面上。与桓仁林蛙蝌蚪有相似生活环境及习性的粗皮蛙蝌蚪在腹部的形态上与十分相似，与流水型蛙蝌蚪相；东北林蛙蝌蚪身体较粗壮，腹部丰满，向下方凸起，因而其体高较大，与桓仁林蛙蝌蚪差异极显著；东北林蛙蝌蚪体型比较宽阔高大，特征与静水型的池蛙类（pond frog）很相似（Duellman and Trueb, 1986；McDiarmid and Altig, 1999）。

桓仁林蛙蝌蚪和东北林蛙蝌蚪之间在体高、体宽、后肢长、尾长和尾肌宽等与体长之比存在极显著的差异，进一步说明这两种林蛙蝌蚪在生活习性和形态上存在种间差异。由于东亚 2n=24 的林蛙种间外部形态差异很小，很难区分，我们在野外考察也表明这点在同域分布的桓仁林蛙和东北林蛙。
蛙尤为突出。本文结果表明可以通过蝌蚪的形态特征对其进行简单的鉴定，利用野外监测蝌蚪分布和种群来了解桓仁林蛙的种群动态等保护生物学问题。

抚松和桓仁两地的东北林蛙蝌蚪的体高、吻距与体长之比有一定差异，可能主要与所观察的两种蝌蚪的生活环境与食物性质有关。桓仁的东北林蛙蝌蚪在实验室中饲养，食物成分单一，而且不能完全保证其摄取足够的食物及营养，因而其消化管的发育可能没有达到最佳水平。而抚松的东北林蛙蝌蚪生活在野外，各方面因素均适于其正常生长发育，因而其消化管粗细均匀，盘曲的圈数更多，腹部更丰满，稍向后下方凸出，所以其体高及吻距与体长的比值更大。这点提示对蝌蚪胚后发育的研究应该将室内饲养观察和野外观察相结合，考虑到诸多环境因子对蝌蚪的影响和不同地理居群蝌蚪的多样性。

4.2 尾部的比较

三地两种蝌蚪中，只有桓仁林蛙蝌蚪的尾很长，与身体中轴几乎呈一条直线，使其在游泳时前进的速度更快；而抚松产东北林蛙蝌蚪的尾末端比身体中轴偏高，桓仁产东北林蛙蝌蚪的尾末端比身体中轴偏低。另外，桓仁产东北林蛙蝌蚪与抚松产东北林蛙蝌蚪的尾部差异极显著。这些差别是因为饲养的蝌蚪因环境原因造成，还是种间或者两种群确实因地理位置不同而存在显著差异，需要进一步研究。

另外，尾肌的强弱程度和产生的动力与尾肌宽、高，及整个尾肌的长度之间的关系也需要一个正确的数学公式来表达，而且尾鳍的形状与尾肌之间的比例关系也是游泳速度快慢的一个因素，不能只通过简单的大小或几项的乘积来确定，如何确定

这些因素之间的关系也是需要解决的一个问题。

5 参考文献

[1] 柳永青，李剑锋．桓仁林蛙的繁殖习性[J]．四川动物，2004，23（3）：183～184
[8] 孙铭娟，陆宇燕，李丕鹏，阿布力米提·阿布都卡迪尔，高行宜．四耳林蛙卵裂后发育的初步观察[J]．动物学研究，2003，24（1）：61～66
[10] Gooner KL．A simplified table for staging amuran embryos and larvae with notes on identification[J]．Herpetologica，1960，16：183～190．