Life History Pattern of *Gymnocypris przewalskii przewalskii* (Kessler) by Fuzzy Pattern Recognition

LIU Jun

(Department of Feed Science, Wuhan Polytechnic University, Wuhan 430023)

Abstract: The life history pattern of *Gymnocypris przewalskii przewalskii* (Kessler) was studied by fuzzy pattern recognition and tested by Bevenston-Holt equilibrium yield model. The reasonable fishing mortality rate and minimum catchable age are also discussed in this paper. The results indicated that the life history pattern of *G. przewalskii przewalskii* (Kessler) belonged to k-selection. Analysis of yield curve also demonstrated that its life history pattern belonged to k-selection. The “critical age” of the fish was about at the age of 15.67 and the relative biomass reached the maximum at the age of from 11 to 16. For protecting the resource, the fishing mortality rate should not be higher than 0.1 and the minimum catchable age should not be lower than 12.

Key words: *Gymnocypris przewalskii przewalskii* (Kessler); life history pattern; fuzzy pattern recognition; Bevenston-Holt equilibrium yield model

1.1 数据来源

表 1 3 种鱼类的生态学参数

<table>
<thead>
<tr>
<th>种类</th>
<th>Species</th>
<th>L_∞ (cm)</th>
<th>W_∞ (kg)</th>
<th>k</th>
<th>T_m (a)</th>
<th>T_{max} (a)</th>
<th>M</th>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. daucus</td>
<td>477</td>
<td>756.8</td>
<td>0.04</td>
<td>16</td>
<td>73.8</td>
<td>0.07</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>E. oxycephala</td>
<td>26</td>
<td>0.387</td>
<td>0.28</td>
<td>1</td>
<td>10.7</td>
<td>0.71</td>
<td>49300</td>
<td></td>
</tr>
<tr>
<td>G. przewalskii przewalskii</td>
<td>59.00</td>
<td>3.099</td>
<td>0.07</td>
<td>6</td>
<td>42.72</td>
<td>0.07</td>
<td>2.90</td>
<td></td>
</tr>
</tbody>
</table>

1.2 计算方法

1.2.1 生活史类型的模糊聚类分析 为了应用模糊聚类分析法，消除生态参数量纲的影响，需将参与计算的参数进行标准化处理。之后，运用极值标准化公式将标准化的数据压缩到 [0, 1] 区间内，再通过夹角余弦法得到相似系数 λ，λ 值越大表示相似程度越高。以代码 1, 2, 3 分别表示合氏蝗、尖头蝗和青海湖裸鲤，λ12 表示合氏蝗与尖头蝗的生活史类型相似程度，λ13 表示合氏蝗与青海湖裸鲤的生活史类型相似程度，λ33 表示尖头蝗与青海湖裸鲤的生活史类型相似程度。

1.2.2 平衡产量模型 用 Beverton-Holt 模式计算在不同捕捞强度和不同起捕年龄的合氏蝗、尖头蝗和青海湖裸鲤产量变化情况，以验证青海湖裸鲤的生活史类型。计算公式如下：

$$Y = F N_0 e^{mk} W_\infty \left(\frac{1}{Z + \frac{3e^{Sr}}{Z + k}} + \frac{3e^{2kr}}{Z + 2k} - \frac{e^{3kr}}{Z + 3k} \right)$$

式中：Y ——渔获量，kg；F ——捕捞强度；N_0 ——每年达到年龄 t_0 时鱼的个体假设数，一般取 1000；r ——幼鱼 t_0 时起捕年龄，t_0 为理论上开始生长的年龄；Z ——捕捞时总死亡率，等于 $F + M$。

2 达氏鲤、尖头蝗和青海湖裸鲤的特征值

表 2 价值参数的 $H. daucus$，$E. oxycephala$ 和 $G. przewalskii przewalskii$

<table>
<thead>
<tr>
<th>代码</th>
<th>Code</th>
<th>鱼名</th>
<th>Species</th>
<th>M</th>
<th>t_0</th>
<th>k</th>
<th>W_∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H. daucus</td>
<td>0.07</td>
<td>-1.2</td>
<td>0.04</td>
<td>756.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>E. oxycephala</td>
<td>0.71</td>
<td>-0.0143</td>
<td>0.28</td>
<td>0.387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>G. przewalskii przewalskii</td>
<td>0.07</td>
<td>-0.14</td>
<td>0.07</td>
<td>3.099</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 研究结果

2.1 模糊聚类分析

应用模糊聚类分析法，计算得到 3 种鱼类之间的相似系数：$\lambda_{12} = 0$，$\lambda_{13} = 0.7350$，$\lambda_{23} = 0.1157$。λ12 = 0，表示达氏鲤与尖头蝗的生活史类型的相似程度为 0，即完全不相似；λ13 = 0.7350，表示青海湖裸鲤与达氏鲤生活史类型的相似程度高；λ23 = 0.1157，表示青海湖裸鲤与尖头蝗生活史类型的相似程度低。因此，判断青海湖裸鲤属比较典型的 k-选择类型鱼类。

2.2 平衡产量模型验证

平衡产量模型验证的结果表明青海湖裸鲤属比较典型的 k-选择型鱼类，应用模糊聚类分析法得到的结论是正确的（图 1, 2）。

图 1 产量曲线表明：在一定的起捕年龄 ($t_0 = 2$) 下，尖头蝗在一定的捕捞强度内产量曲线处于上升阶段 ($F = 0.1 \sim 2.0$)，F 在 2.0 之后才开始极其缓慢的下降。这表明捕捞对种群数量变动的影响，在种群数量自然变动的掩盖下不明显，产量曲线呈典型 r-选择特征；达氏鲤的产量曲线则明显地呈现出相反情况，$F = 0.1$ 强度影响时，产量曲线即急剧下降，呈现典型的 k-选择曲线；青海湖裸鲤产量曲线与达氏鲤的产量曲线非常相似，当受到 $F = 0.1$ 强度影响时，产量曲线也急剧下降，呈现比较典型的 k-选择曲线。

图 2 产量曲线显示：在一定的捕捞强度 ($F = 0.3$) 下，变更起捕年龄 ($t_0 = 0.5, 1, 2, \ldots 8$)，尖头蝗在 1 龄前捕捞产量上升，1 龄后随起捕年龄增加产量急速下降，呈现典型的 r-选择曲线，反映出 r-选择种群繁殖力强，提高起捕年龄，产出的后代密度迅速增大，个体生存空间相对减少，影响个体生长，导致产量下降；达氏鲤的起捕年龄在 21 龄之前，产量随着起捕年龄的提高而增加，超过 21 龄才缓慢下降，呈现典型的 k-选择曲线，反映出 k-选择种群繁殖力低，随着起捕年龄的提高，群体数量有所增加，增大到一定密度后，才影响到个体生长速度，引起产量缓慢下降；青海湖裸鲤在 17 龄之前，产量随着起捕年龄的提高而增加，超
过 17 岁才缓慢下降，该曲线与达氏鳇的产量曲线非常相似，呈现比较典型的 k-选择曲线。

![图 1 3 种鱼在改变期间捕捞率时的产量曲线](image1)

图 1 3 种鱼在改变期间捕捞率时的产量曲线

![图 2 3 种鱼在改变期间捕捞率时的产量曲线](image2)

图 2 3 种鱼在改变期间捕捞率时的产量曲线

3.2 青海湖裸鲤合理捕捞年龄与捕捞强度

研究结果表明，青海湖裸鲤属比较典型的 k-选择类型鱼类。在渔业管理上，对 k-选择鱼类的对策是：(1) 适当提高捕捞年龄；(2) 采取较低的捕捞强度；(3) 群体对捕捞强度很敏感，因捕捞引起资源量下降，资源很难恢复，对这类鱼的捕捞强度要加强管理。

作者运用 Chen 等[11]提出的鱼类世代生物量数学模型，计算得到青海湖裸鲤某一世代的逐年生物量变化如表 3 所示。表 3 表明青海湖裸鲤的世代生物量在 16 岁之前呈逐渐上升的趋势；在 16 岁以后，世代生物量开始有所下降。整个世代生物量在 11～16 岁最大。研究表明鱼类的成年年龄与捕获年龄是一致的[12]，因此青海湖裸鲤的成年年龄即为 15.67 岁。

规定最小的捕捞规格和合理的捕捞强度是保证天然渔业高产和可持续发展的重要措施之一。最小捕捞年龄以及捕捞强度的确定，一方面需要考虑尽可能以最大的限度去利用最高生物量，另一方面还需要保证种群有足够多的补充繁殖群体。现有资料表明青海湖裸鲤的首捕年龄为 6 岁，捕捞强度为 0.269[13]。而青海湖裸鲤的初次繁殖年龄雌性为 6 岁，雄性为 5 岁[8]；图 1 的产量曲线表明，当捕捞强度超过 0.1 时，产量即急剧下降。因此，青海湖裸鲤现行的捕捞规格与捕捞强度是十分不合理的。

研究表明，青海湖裸鲤生长缓慢，达到 500 g 重的个体需要 10 年以上[3]；性成熟晚，初次繁殖年龄雌性为 6 岁，雄性为 5 岁[5]；繁殖力低，平均绝对卵数为 6924 粒[8]；在 11～16 岁时青海湖裸鲤的世代生物量最大，群体对捕捞强度很敏感，当捕捞强度超过 0.1 时，产量即急剧下降。因此，综合上述因素，综合市场对鲜产品规格的需求情况，作者认为青海湖裸鲤鱼类资源的利用，必须以满足一个足够数量和总年龄结构的繁殖群体为前提，从而建议对青海湖裸鲤进行捕捞的最小捕捞年龄为 12 岁，捕捞强度不超过 0.1。
表 3 自然死亡条件下青海湖裸鲤世代生物量的消长

<table>
<thead>
<tr>
<th>年龄 Age</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>生物量 Biomass</td>
<td>155.3</td>
<td>483.8</td>
<td>915.4</td>
<td>1396.1</td>
<td>1886.7</td>
<td>2360.0</td>
<td>2797.8</td>
<td>3189.0</td>
</tr>
</tbody>
</table>

4 参考文献

[1] 张金兰，覃永生。青海湖渔业环境状况及管理保护对策[J]。青海环境，1997，7（4）：159～163。
[9] 翟学礼。生物多样性[M]。北京：科学出版社，1999。
[10] WE 里克（费鸿年，袁蔚文译）。鱼类种群生物统计学[M]。北京：科学出版社，1984。

卧龙迎来又一个大熊猫丰收年

卧龙迎来又一个大熊猫丰收年

【本刊讯】据9月来自卧龙中国保护大熊猫研究中心的消息，2005年卧龙圈养大熊猫产11胎，出生幼仔16只，至今全部存活。据悉，今年全球大熊猫产仔情况是：国内，成都大熊猫繁育研究基地产1胎1仔成活，北京动物园产1胎2仔成活，陕西洋县猕猴科动物研究所研究中心产1胎2仔成活1只；国外，美国华盛顿动物园和圣地亚哥动物园的大熊猫分别产1胎1仔成活，日本和歌山野生动物园大熊猫产1胎2仔成活1只。今年中国保护大熊猫研究中心的大熊猫产仔情况预示着卧龙迎来了又一个大熊猫的丰收年。

中国保护大熊猫研究中心自1979年开始饲养大熊猫以来，历经了10年左右的曲折道路，至1991年圈养的大熊猫终于开始了由少到多的连续产仔，成为圈养大熊猫繁殖序列中迟到的春天。卧龙大熊猫繁殖中心是唯一建在hesi国家基因库期内的，对大熊猫的生长发育、繁殖具有得天独厚的自然环境优势。由于研究机构的一批年轻领导、科研骨干及饲养人员积极学习进取，忘我劳动，不断提高饲养管理水平，逐渐掌握了大熊猫饲养基本技术，解决了圈养大熊猫繁殖中的饲养难、技术难、繁殖难、管理难、产仔难、繁殖难的三大难题，提高了卧龙圈养大熊猫的繁殖率、产仔率和初生幼仔成活率，对增加圈养大熊猫的种群数量起到了十分重要的作用。

（郭勤、魏荣平、王伟月报道）