圈养条件下犬蝠对陌生食物首次取食行为的研究

杨剑1，周善义2，骆艳艳1，洪体玉1，张光良1，谭静1，陈秋1，陈柏承3，张礼标1*

（1. 广东省昆虫研究所，广东省野生动植物保护与利用公共实验室，广州 510260；
2. 广西师范大学生命科学学院，广西桂林 541004；3. 广州大学生命科学学院，广州 510006）

摘要：动物在觅食过程中，尝试取食陌生食物会给其带来潜在的风险或是利益。许多动物在首次遇到陌生食物时，不会立即对其进行取食，甚至感到恐惧而避开。这是动物应对陌生食物和环境的一种恐新行为（neophobia）。

对广东省四会市圈养条件下的犬蝠 Cynopterus sphinx 取食行为进行研究。结果发现，在实验中犬蝠首次面对陌生食物（苹果）刺激时表现出 2 种不同的行为，14 只实验个体中，6 只在首次面对陌生食物时直接对其进行取食，定义其为探索者（explorer）；而另外 8 只对陌生食物表现出了恐新行为，定义其为恐新者（coward）。在人为施加的环境压力下，恐新者经过反复试探，首次成功取食陌生食物后才接纳陌生食物。雌雄个体间（Mann-Whitney U test；雌性 31.3 min ± 8.5 min, n = 6，雄性 122.8 min ± 16.2 min, n = 5，U = 721.0, P < 0.001）及亚成体与成体间（Mann-Whitney U test；亚成体 20.9 min ± 10.9 min, n = 3，成体 72.9 min ± 9.7 min, n = 11，U = 901.0, P < 0.001）在首次取食行为上的差异有统计学意义，雌性和亚成体个体更易于接受陌生食物。本文研究结果表明，犬蝠对陌生食物首次取食的这 2 种行为差异各自有其生态学意义，探索者的行为有利于拓展取食食物源，以应对野外多变的环境；而恐新者的行为可防止摄入过多有毒或营养过剩的食物。雌性倾向于探索陌生食物，可能与其中种群中的繁殖地位有关，亚成体积极探索陌生食物的行为则体现出其取食经验上的缺乏，同时也利于将陌生食物引人种群食谱中。行为的多样性利于种群繁衍，本文探讨了 2 种取食策略各自的利弊关系。

关键词：犬蝠；陌生食物；首次取食；恐新行为；探索行为

中图分类号：Q959.8 文献标志码：A 文章编号：1000 – 7083(2015)02 – 0187 – 06

First Foraging of Cynopterus sphinx on Novel Food

YANG Jian1，ZHOU Shanyi2，GONG Yanyan1，HONG Tiyu1，ZHANG Guangliang1，
TAN Liangjing1，CHEN Yi1，CHEN Bocheng3，ZHANG Libiao1*

（1. Guangdong Public Laboratory of Wild Animal Conservation and Utilization，Guangdong Entomological Institute，
Guangzhou 510260, China；2. College of Life Sciences, Guangxi Normal University, Guilin, Guangxi Zhuang Autonomous
Region 541004, China；3. School of Life Sciences, Guangzhou University, Guangzhou 510006, China）

Abstract: In the process of animal foraging, the behavior on obtaining novel food will result in potential risks or benefits. Many animals will hesitate whether they are to eat the novel foods or not at the first encounter, and even frightened or refuse to eat it. Such animal behavioral propensities is known as neophobia to describe the behavior on coping with novel foods and ambient. Foraging behavior of captive short-nosed fruit bat (Cynopterus sphinx) was observed in Sihui city (Guangdong province) from October to December in 2010. They showed two different reactions when they were first stimulated by the novel foods (apple). Among the fourteen experimental bats, 6 obtained apple directly for the first time, and these bats were therefore defined as explorers, while the others performed neophobia at the same condition, and these bats were defined as cowards which may accept the novel foods after repeated explorations. Significant differences were observed on the first feeding behavior between males and females (Mann-Whitney U test；males 31.3 min ± 8.5 min, n = 6，males 122.8 min ± 16.2 min, n = 5，U = 721.0, P < 0.001），subadults and adults (Mann-Whitney U test；subadults 20.9 min ± 10.9 min, n = 3，adults 72.9 min ± 9.7 min, n = 11，U = 901.0, P < 0.001），suggested that the female and subadult individuals may be easier to accept the novel foods. In conclusion, the two behaviors of short-nosed fruit bats against the novel foods at the first time had different ecological significance, the characteristics of explorers contributed to the exploitation of food re-

DOI:10.3969/j.issn.1000 – 7083.2015.02.005

基金项目：广州市珠江科技新星专项（No. 2011J2200027）；广东省昆虫研究所创新人才基金项目（GDEI-exr-201303）；广东省科技计划项目（2013B050800024）
作者简介：杨剑(1983—)，男，博士研究生，主要从事动物行为生态学研究，E-mail：yangjian1208@foxmail.com
* 通信作者 Corresponding author，E-mail：zhanglb@gdei.gd.cn

在圈养条件下，我们通过对蛙取食陌生食物的行为进行观察，了解其对陌生食物的首次取食反应，并人为施加环境压力，观察其在熟悉食物匮乏时对陌生食物的取食反应，探究这一行为对取食策略的影响，以及在其野外生存中潜在的作用及生态意义。

1 研究方法

1.1 实验动物

蛙样本采集地为广西北海，共计 14 只个体（雄性 6 只，雌性 8 只）。2010 年 10—12 月，在广东省四会市大南山林场室内实验室圈养条件下进行行为观察。在进行预实验时，全部蝙蝠随机分成 2 笼，每笼 7 只，分别饲养在 100 cm × 50 cm × 60 cm 的饲养笼中 15 d，期间只喂食足量的香蕉和含有维生素的纯净水，使其适应实验环境。在进行实验前，将犬蝠分笼单只饲养，每只犬蝠单笼饲养在同样规格的饲养笼中，饲养笼放置在 20 m × 10 m × 3 m 的实验室内，实验室内温度为 (18.2 ± 0.3) °C，平均湿度为 (62.1 ± 0.6) % (n = 30)。将直径大小为 5.2 cm ± 0.2 cm (n = 140) 的成熟苹果作为陌生食物刺激，因为苹果产地主要为我国北部地区，蛙在野外环境觅食过程基本无法遇到，适合作为陌生食物刺激。

1.2 实验方法

1.2.1 形态测量 将笼养的 14 只蛙从饲养笼中取出，用柔软的布包裹后分别进行形态测量，前臂长用游标卡尺进行测量（精确到 0.1 mm），体质量用电子秤称量（精确到 0.1 g）。

1.2.2 预实验 蛙取食活动规律观察 15 d 的适应期后，14 只蛙仍分 2 笼饲养，在饲养笼上方放置红外摄像头，每天定时（18:00）将香蕉直接投入笼中作为食物，保证每日投入的食物量超过犬蝠平时每日的取食量，同时打开红外摄像机进行监控，监控时间为晚上 18:00 至次日凌晨 06:00，连续记录 7 d 作为预实验，以观察室内饲养条件下蛙的取食活动规律，单只个体成功取食一次作为一次有效取食。以 1 h 作为单位时间段，记录单位时间内蛙成功取食香蕉的总次数，确定其取食高峰时间，选取适合时间段进行实验观察。

1.2.3 蛙对陌生食物取食行为观察 7 d 的预实验后，将 14 只蛙分别用 14 个饲养笼进行单独饲
养，在每个饲养笼上方放置红外摄像头，保证能清晰地观察到笼内犬蝠的活动行为，笼子四周用不透明的材料隔开，使每只蝙蝠处于相对独立的环境中，排除相互问直接的干扰和影响。在投人陌生食物前，仍以香蕉作为食物，时间为 2 d，以稳定被隔离后单只饲养犬蝠的取食行为。

2 d 的稳定期之后，开始进行陌生食物投喂实验。在投食前打开摄像头，在犬蝠取食高峰时间段内分别向饲养笼内直接投入完整的苹果，记录投食时间 t，观测犬蝠的取食反应，当犬蝠发生成功的取食行为时，记录为开始取食的时间 t′，根据投食时间和犬蝠成功取食的时间，得出犬蝠对陌生食物取食的抉择时间（t′ - t）。

保证实验期间每日投食时间基本一致，并在每日观察实验结束后从笼中取出苹果，投入适量的香蕉，保证未取食陌生食物的个体获取食物来源。重复此实验过程，在所有犬蝠都对苹果出现成功取食行为后，比较犬蝠个体对陌生食物取食的抉择时间（t′ - t）的长短，分析犬蝠个体对陌生食物刺激的应性差异。

1.2.4 数据分析方法 由于样本量相对较小，利用 Mann-Whitney U 检验分析犬蝠恐新者与探索者的体质和前臂长差异，以及犬蝠雌雄个体间、亚成体和成体间首次取食时间的差异。所有数据均用 SPSS 11 和 Excel 进行处理。α = 0.05，数据以 Mean ± SD 表示。

2 结果

2.1 犬蝠取食活动规律

如图 1 所示，在室内笼养条件下，通过连续 7 d 的观察，笼养状态下 14 只犬蝠从 18:00 至次日 06:00 共计 12 h 的时间内，单时间（1 h）内的 14 只犬蝠整体取食次数呈下降的趋势（图 1）。取食高峰出现在 18:00—22:00 时间段内，取食高峰时间段内取食频次最高为 18:00—19:00 时间段，为 13.3 次 ± 0.5 次（n = 7），随后取食频次逐渐降低，到凌晨 05:00—06:00 时间段内取食频次最低，为 1.1 次 ± 0.4 次（n = 7）。故选取 18:00—22:00 时间段作为行为观察的记录时间段。

2.2 犬蝠对陌生食物的取食行为

在对犬蝠进行陌生食物取食行为观察时发现，14 只犬蝠对陌生食物首次取食表现出 2 种不同的行为。其中 6 只个体在首次面对陌生食物时，从投人陌生食物开始，很短时间内就接纳并取食陌生食物，未表现出对陌生食物的排斥行为，在连续观察的 10 d 内，取食抉择时间较为接近。我们定义这些个体为探索者（explorer，表 1，编号 9—14）；而另外 8 只个体在首次面对陌生食物时则表现出恐新行为，不愿意取食陌生食物，直至经过连续多晚的适应和试探，才开始取食，但一旦其首次取食陌生食物后，再次面对陌生食物时的取食抉择时间则显著缩短，我们定义这些个体为恐新者（coward，表 1，编号 1—8）。

对犬蝠连续 10 d 首次取食时间进行成年雌雄个体间、亚成体与成体间比较分析，结果发现，雄雌个体间首次取食时间差异有统计学意义（Mann-Whitney U test；雌性 31.3 min ± 8.5 min，n = 6，雄性 122.8 min ± 16.2 min，n = 5，U = 721.0，P < 0.001），亚成体与成体首次取食时间差异有统计学意义（Mann-Whitney U test；亚成体 20.9 min ± 10.9 min，
n = 3，成体 72.9 min ± 9.7 min，n = 11，U = 901.0，P < 0.001）。即雌性和亚成体个体首次取食陌生食物的时间均较短，较易于接受陌生食物。

2.3 恐新者与探索者每日取食抉择时间情况对比

探索者在 10 d 的实验观察期间，取食抉择时间都较为接近，对陌生食物刺激的反应表现差异不大。而恐新者面对陌生食物刺激，每日取食抉择时间在前 7 d 都在发生变化，整体呈下降的趋势，表现出对陌生食物逐步适应和接受的过程；但是，两者最后对食物的取食抉择时间都趋于相近（图 2），表明在对陌生食物经过一段时间的试探和适应后，恐新者通过对陌生食物进行取食评估和权衡，逐渐接受了陌生食物。

![图 2 探索者与恐新者连续 10 d 每日取食陌生食物抉择时间对比](image)

Fig. 2 Comparison of foraging choice on novel food between explorer and coward during continuous 10 days

2.4 形态测量结果

根据犬蝠面对陌生食物取食行为的表现，将测量的形态数据进行分组比较，探索者与恐新者在体质量和前臂长上的差异均无统计学意义（表 2）。

3 讨论

从犬蝠取食活动频率实验可看出，室内笼
在饲养状态下犬蝠取食频率最为频繁的时间段为18:00—20:00，这与之前报道的野外犬蝠取食高峰时间基本相似（Elangoan et al., 2001）。因为此时蝙蝠经过了一天的能量消耗，急需进食以补充能量。犬蝠另一个取食较为频繁的时间段为随后的20:00—22:00，这是因为在第一个取食高峰过后，犬蝠会进行短时间的休憩和调整，然后继续进行捕食。晚上22:00以后犬蝠取食频次逐步降低，根据连续多日的观察，在18:00—22:00时间段内，犬蝠取食行为和其他行为活动最为频繁，是犬蝠整晚的行为活跃期，在此时间段内犬蝠对外界刺激的反应最为明显，因此我们选择在此时间段内进行陌生食物刺激实验。

在进行实验前，所有的犬蝠都只喂食香蕉和添加了维生素的纯净水，香蕉是犬蝠已经熟悉的食物。国内苹果的主要产区为华北地区，华南地区没有种植，犬蝠主要分布在华南地区。犬蝠对陌生食物刺激的新鲜感和警戒行为较家猫明显，在野外的觅食过程中，犬蝠会进行短时间的休憩和调整，然后继续进行捕食。晚上22:00以后犬蝠取食频次逐步降低，根据连续多日的观察，在18:00—22:00时间段内，犬蝠取食行为和其他行为活动最为频繁，是犬蝠整晚的行为活跃期，在此时间段内犬蝠对外界刺激的反应最为明显，因此我们选择在此时间段内进行陌生食物刺激实验。

在进行实验前，所有的犬蝠都只喂食香蕉和添加了维生素的纯净水，香蕉是犬蝠已经熟悉的食物。国内苹果的主要产区为华北地区，华南地区没有种植，犬蝠主要分布在华南地区。犬蝠对陌生食物刺激的新鲜感和警戒行为较家猫明显，在野外的觅食过程中，犬蝠会进行短时间的休憩和调整，然后继续进行捕食。晚上22:00以后犬蝠取食频次逐步降低，根据连续多日的观察，在18:00—22:00时间段内，犬蝠取食行为和其他行为活动最为频繁，是犬蝠整晚的行为活跃期，在此时间段内犬蝠对外界刺激的反应最为明显，因此我们选择在此时间段内进行陌生食物刺激实验。

在进行实验前，所有的犬蝠都只喂食香蕉和添加了维生素的纯净水，香蕉是犬蝠已经熟悉的食物。国内苹果的主要产区为华北地区，华南地区没有种植，犬蝠主要分布在华南地区。犬蝠对陌生食物刺激的新鲜感和警戒行为较家猫明显，在野外的觅食过程中，犬蝠会进行短时间的休憩和调整，然后继续进行捕食。晚上22:00以后犬蝠取食频次逐步降低，根据连续多日的观察，在18:00—22:00时间段内，犬蝠取食行为和其他行为活动最为频繁，是犬蝠整晚的行为活跃期，在此时间段内犬蝠对外界刺激的反应最为明显，因此我们选择在此时间段内进行陌生食物刺激实验。
有着一定的影响和作用。本实验的结果还显示，在面对陌生食物刺激时，雄性犬蝠表现出明显的探索取食倾向，而雌性个体表现出明显的恐新行为，对陌生食物具有较强的警戒性。我们猜测，由于雌性犬蝠在种群繁殖中的投入更多，整体上需要付出更大的能量消耗，其在平时的觅食中更倾向于拓展自身的食谱，利于获取更多的能量，但也承担更大的取食风险。而雄性个体在平时则采取了较为安全保守的取食策略，但在获取食物资源范围内则存在一定局限性。

犬蝠对陌生食物首次取食成功与否，对犬蝠在野外生存中的取食策略有着一定的影响。当犬蝠首次遇到陌生食物并进行试探性的取食，其取食是否成功，可能影响到此个体对此食物的取食评估，在权衡陌生食物取食的难易和取食能耗比后，对于首次取食不成功的陌生食物，在环境食物资源丰富的情况下，犬蝠可能会放弃再次对其进行试探，而选择其他熟悉的、更易于取食的食物，以降低取食的投入消耗和提高取食的效率。而当环境食物资源缺乏，食物选择不多的条件下，犬蝠会对陌生食物进行反复的试探，在取食成功后，完成对食物的取食评估并迅速地接纳陌生食物作为食物源。这2种不同的取食行为在生存环境资源不同时，对犬蝠野外生存有着不同影响，当环境资源匮乏时，积极的探索取食行为使得这2种犬蝠更容易获得新的食物来源而生存下来，但同样也承担探索取食的风险；当环境资源较为丰富时，保守的取食策略，即恐新行为，降低了由于试探取食带来的危险和危害，起到了降低生存风险和保护的作用，但同时也放弃了获得新食物来源的机会。因此，这2种取食策略在不同的生存环境下各有利弊。此外，一个物种行为的多样性对于种群的繁衍也可能起到重要的作用，有利于应对多变的生存环境。

总之，犬蝠在面对陌生食物时，首次成功取食对犬蝠进行食物的选择和评估起着关键性的作用，环境资源压力的改变会影响犬蝠取食的行为。实验中雄性犬蝠表现出明显的恐新行为，取食行为更为谨慎，可以降低陌生有害的食物对种群带来的危害，降低整个种群的取食风险。亚成体对陌生食物探索欲更强，可能对将陌生食物引入种群的食谱有着一定的影响和作用。所处环境食物的丰富与否，以及熟悉食物的供给是否充足，均有可能影响动物对陌生食物探索行为的强度。

参考文献：
Chapple RS，Lynch JJ. 1986. Behavioural factors modifying acceptance of supplementary foods by sheep[J]. Research and Development in Agriculture, 3; 113-120.