哈尔滨市区灰喜鹊巢址选择研究

吴建平，于超，张天才
（东北林业大学野生动物资源学院，哈尔滨 150040）

摘要：2010 年 6 月至 9 月在哈尔滨市园林科学研究所实验基地采用样方法对灰喜鹊的巢址选择特征进行研究，并且利用主成分分析法对灰喜鹊巢址样方生境因子进行检验。结果表明，灰喜鹊主要选择针叶树筑巢；在同一年生境
中巢间距变化小，呈均匀分布。灰喜鹊巢址选择的主要因子包括营巢树高、距最近巢距离，样方内树种高、巢树树径、
距干扰源距离，距最近巢距离。这说明灰喜鹊在巢址选择过程中选择巢树和生境的多样性。

关键词：哈尔滨市区；灰喜鹊；巢址选择

中图分类号：Q595.7;Q588 文献标识码：A 文章编号：1000 – 7083(2012)05 – 0775 – 03

Nest-site Selection of Azure-winged Magpie in Harbin

WU Jian-ping, YU Chao, ZHANG Tian-cai
(College of Wildlife, Northeast Forestry University, Harbin 150040, China)

Abstract: Selection of nest-site of azure-winged magpie in experimental bases of garden science institution in Harbin was
surveyed from June to September in 2010 by quadrat sampling method, and factor habitats of nest quadrant were examined by
factor analysis method. The results indicated that coniferous forests were mainly selected for nest construction; little variation
and homogeneous distribution were presented in distance of the nests in the same habitat; factors including tree height of
nest, distance of the nearest nest, the average altitude of arbor in quadrat, the diameter of nest tree, distance to disturbance,
and distance to the nearest tree were measured and analyzed. This indicated nest trees and small surrounding habitats were
chosen by azure-winged magpie in selection of nest habitats.

Key words: Harbin; azure-winged magpie; nest-site selection

城市生态环境是城市生态系统中除人以外的自然条件和人文条件的总称（叶春芳，赵明华，2005），
鸟类与城市的生态环境有着非常密切的关系。城市
绿地类型及结构对城市鸟类栖息地结构、生态分布有
重要影响，而鸟类群落变化情况可能为环境变化的
一种标志，同时也反映了环境结构的适宜度（郭殿建
等，1997）。针对城市环境与城市中鸟类的关系，已
有学者从不同角度进行了调查研究（郑光美，1984；
Susan & Durham，2004）。但针对灰喜鹊繁殖生态、
巢址选择及食性研究，只有少数文献涉及（汝少国
等，1998；胡剑，2006；史荣耀等，2007；李守杰等，
2008）。

本文对哈尔滨市园林科学研究所实验基地中灰
喜鹊巢址选择的影响因子进行了研究，为进一步研
究城区中的鸟类、鸟类的保护、城市建设中的生态问
题——诸如城市绿化树种的选择与配置、绿地的规
划等给出依据。

1 研究地自然环境概况

哈尔滨市园林科学研究所的实验基地位于哈尔
滨市香坊区，主要由针叶树、阔叶树、灌木、花苗圃组
成。植物的种类主要包括旱柳 Salix matsudana、杨
Populus spp.、紫丁香 Syringa oblata、暴马丁香 Syrin-
ga reticulata var. mandshurica, 塔柏 Sabina chinensis、
红皮云杉 Picea koraiensis, 落叶松 Larix sp.、花楸 Sor-
bus pohuashanensis, 家榆 Ulmus pumila, 水腊 Ligus-
trim obtusifolium、红瑞木 Cornus alba、东北接骨木
Sambucus manshurica 等。动物的种类主要是鸟类和
啮齿类，包括大山雀 Parus major, 树麻雀 Passer man-
tanus、长耳蝠 Asio otus、毛脚燕 Heteropterus、褐家鼠
Rattus norvegicus、小家鼠 Mus musculus 等。针叶树的
面积约占实验基地面积的 1/8，而阔叶树的面积约
占 3/8，灌木和花苗圃约占总面积的 4/8。针叶树呈

DOI:10.3969/j.issn.1000 – 7083. 2012. 05. 018

775
集中分布在试验基地的西北部，而阔叶树主要在试验基地的东北部，灌木和花苗圃集中在试验基地的中央。在试验基地的西南侧为马家沟河及空地，北侧是东北林业大学及住宅区。试验基地共占地面积 4.1 hm²（图 1）。

2 研究方法

2010 年 6 月至 9 月，在哈尔滨市园林科学研究所试验基地对灰喜鹊巢址的选择进行研究。

2.1 巢址数据调查方法

利用 GPS 定位巢树位置，通过测高仪测量巢树，巢高度，同时用皮尺测量巢树胸径，另外利用样方法调查巢树周围的小生境，样方法的大小是以巢树为中心的半径 5 m 圆；测量的样方因子包括营巢位置，巢距地高，巢树胸径，巢处分枝数，5 m 内巢数，营巢树高，营巢树树顶高，5 m 内树均高，5 m 内树株数，距最近树距离，距干扰距离，最近树高，距最近巢高。

2.2 数据处理

采用 SPSS 17.0 和 Excel 统计分析软件进行数据处理分析。

3 研究结果和分析

3.1 巢址位置

研究地的树林由以塔柏为主的针叶林和杨柳等阔叶林组成。针叶林的面积约占研究地面积的 1/8，而阔叶林约占 3/8，同时以塔柏为主的针叶树集中分布，数目较多，但高度相对较低。而以杨柳为主的阔叶树稀疏分布，树的株数也较少，但是高度却大于针叶林。所观察的 18 个灰喜鹊巢中，位于塔柏上的共有 15 个，占 83.6%，剩下的 3 个巢在阔叶树上，1 个位于榆树上，其他 2 个位于树林中（图 2）。

3.2 不同生境中巢的分布

灰喜鹊在研究地不同的营巢生境中，巢的分布变化较大，对 18 个巢进行统计分析得知巢间距小于 5 m 的巢共有 15 个，针叶树林中的巢占总巢数的 83.3%。但是在阔叶树林中巢间距较大，总体来说在同种生境中巢呈均匀分布。

3.3 巢距干扰源距离与巢密度

灰喜鹊是一种群居性鸟类，在巢树 5 m 的范围内存在多个巢，研究地的灰喜鹊巢距干扰源有一定的距离，巢数在距干扰源不同的距离上有所变化，其中距干扰源 50 m 处的距离巢分布最多，占总巢数的 55.6%（表 1），但是距干扰源距离与巢密度之间没有显著相关性（P > 0.05）。

表 1 灰喜鹊巢距干扰源距离与巢分布频次

<table>
<thead>
<tr>
<th>表干扰距离 (m)</th>
<th>巢数 (个)</th>
<th>百分比 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5</td>
<td>27.8</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>55.6</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>11.1</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>5.6</td>
</tr>
<tr>
<td>合计</td>
<td>18</td>
<td>100.0</td>
</tr>
</tbody>
</table>

3.4 巢样方主成分分析

为了确定影响灰喜鹊巢址选择的主要因子，对灰喜鹊巢样方中的 12 个生境因子进行分析。如表 2 显示，特征值大于 1 的主成分共有 3 个，累积贡献率达到 79.054%，说明这 3 个主成分包括了所选择的 12 个变量的大部分信息。经过旋转成分矩阵分析发现，第一主成分中绝对值较大的主要虫巢距离，5 m 内树均高，巢树高，巢树高。主要反映灰喜鹊对建巢空间位置的要求，命名为小生境因素。第二主成分中绝对值较大的是巢树胸径，距干扰源距离，距最近树距离，反映出灰喜鹊对巢树的选择，命名为巢树因子。第三主成分中绝对值较大的是最近树高，
4 讨论

灰喜鹊是典型的群巢性鸟类，研究地灰喜鹊的巢呈一定距离均匀分布，这种群巢有助于灰喜鹊共同对抗天敌，增加育雏的安全，提高繁殖成功率，而巢区种群的资源竞争使得巢与巢之间的距离因营巢树的不同而变化，所以在适合建巢的针叶树上，巢的数量相对较大。83.6%的巢都位于塔柏树上，因为针叶树木具有粗糙的树干和比较锐利的针叶，这些可以有效防御天敌，如雀类等外来的天敌袭击繁殖巢，而阔叶树的隐蔽条件和抗天敌进犯能力比针叶树差，所以阔叶树上的巢数量明显小于针叶树。汝少国等（1998）研究也表明灰喜鹊主要筑巢在密度较大且隐蔽的针叶树上，但这不同于尚玉昌等（1994）、李守杰等（2008）研究的结果——大学校园里的灰喜鹊选择阔叶树作为筑巢树种，也不同于汝少国等（1998）年提出的灰喜鹊对树种选择性不强的结论。在聊城大学校园中，灰喜鹊选择杨树（毛白杨和银白杨）作为筑巢树种的比例高达82%，在大学校园内灰喜鹊的筑巢树种多为加拿大杨，占66.1%（尚玉昌等，1994；汝少国等，1998；李守杰等，2008）。以上研究结果的不同可能是因为干扰程度和隐蔽条件影响了灰喜鹊对巢树的选择。通过观察发现，在距干扰源50 m 处巢的密度要远远大于100 m 和200 m 处。在距干扰源30 m 处，巢的数量要明显大于距干扰 hypocrita 50 m 处的高度，在隐蔽性较差的阔叶树上，巢的高度大于塔柏上巢的高度，另外塔柏上的巢全部无外巢，而阔叶林中的巢全部具有外巢。汝少国也认为巢的隐蔽程度和高度与周围环境的干扰程度呈正相关性。李守杰、尚玉昌的观察结果也是如此，人为干扰程度与巢高度呈负相关性。聊城大学校园内阔叶树上的巢高度超过10 m，北京大学校园中的巢高度为（9.66 ± 2.91）m，而在小兴安岭地区大多数的巢距地面高度在1.5 m 以下（尚玉昌等，1994；汝少国等，1998；李守杰等，2008）。

灰喜鹊巢址选择受多种生境和人为因素影响。这些因素导致灰喜鹊在巢址选择过程中将选择巢树和其周围的小生境。这与汝少国等（1998）的研究结果相符。巢区特征主要体现在巢树树径。巢树树径的大小是一棵树树径与树径的外在表现之一，如果巢树树径过小，被风折断或者遇害虫的可能性较大，那样会给育雏带来很大风险。另外树径过小的巢树的枝叶隐蔽性也会较差，对于灰喜鹊自身及巢的安全都有不利影响。巢树周围的小生境主要体现在距最近巢距离和最近树高。由于灰喜鹊是群巢性鸟类，所以繁殖巢相对集中可以形成一个繁殖地形成群体防御（李守杰等，2008）。在繁殖期间，时常会有家猫、乌鸦等各种天敌入侵巢区，偷食雏或雏鸟。因此距其他巢越近，进入巢区天敌的可能性就越大，灰喜鹊群起而攻之，增加了击退天敌的可能性，即便天敌成功地袭击了繁殖巢，那么单个巢遇袭的几率也很小，这是因为灰喜鹊的巢是相对集中分布在一起，以上两个因素都无形中提高了灰喜鹊的繁殖成功率。
白酶，对食物进行初步的消化和吸收。小肠是食物消化和营养吸收的主要场所，由肝脏、胰腺和小肠粘膜所分泌的各种消化酶及缓冲液在胃内容物——食糜的移动刺激作用下进入小肠，对食物进行消化和吸收。所以小肠本身的淀粉酶和蛋白酶的活性比肝胰脏，腺胃和大肠低。本实验在麻雀肌胃内检测到了淀粉酶、蛋白酶和纤维素酶的活性，但活性较低。因为肌胃的主要功能是机械性地研磨食物，同时利用腺胃分泌的消化液对食物进行酶和酸的水解。

总之，动物消化酶活性的高低决定动物对营养物质消化吸收的能力。环境条件的改变可引起动物本身内分泌机能发生变动，随着季节的变化消化酶的活力和组成也有一定的变化，进而影响动物对能量的获取，导致生长状态的变化。关于麻雀体内消化酶的季节性变化规律还有待进一步研究。

4 参考文献
韩芬芳. 2006. 10 种鸟类消化系统的比较研究[J]. 经济动物学报，10 (1)：35 ~ 38.
李铭. 柳松松. 2008. 4 种雀形目鸟类消化道形态特征[J]. 动物学杂志，43 (1)：116 ~ 121.
孙建礼，贾中秋，陈可心，等. 2003. 普北蚱和中国石龙子几种消化酶活力比较研究[J]. 四川动物，22 (4)：137 ~ 139.

(上接第 777 页)

另外灰喜鹊具有在巢周围树上鸣叫炫耀或者观察环境的习性，这就影响着灰喜鹊对巢区树种树高密度的选择。灰喜鹊筑巢期间，通过在巢区处树上大声鸣叫来炫耀自我或是警示其他同类，在育雏期间，灰喜鹊进巢时会在巢周围树上停留，观察巢的周边环境。因此巢周围的小生境是灰喜鹊成功育雏必不可少的条件。

5 参考文献
胡筑. 2006. 灰喜鹊生态学研究进展[J]. 森业调查研究，31 (5)：57 ~ 60.
李守军，刘宁，王桂英. 2008. 聊城大学校园灰喜鹊营巢特征调查[J]. 野生动物杂志，29 (2)：84 ~ 86.
赛道建. 1998. 济南近郊鸟类群落数量多样性和均匀性的研究[J].


山东师范大学，(3)：89 ~ 97.
赛道建. 1994. 济南自然景观变迁对鸟类群落的影响[J]. 山东师范大学，(2)：70 ~ 76.
史荣群，李茂义，秦军，等. 2007. 灰喜鹊繁殖习性的初步观察[J]. 四川动物，26 (1)：165 ~ 166.