Effects of Cadmium on Spermatric Antioxidant Enzyme Activities and Lipid Peroxidation in Freshwater Crab Sinopotamon yantsekiensi

XU Tuan, LI Ying-jun, JIN Fen-fen, LEI Wen-wen, WANG Qian, WANG Lan*
(School of Life Science, Shanxi University, Taiyuan 030006, China)

Abstract: To investigate the reproductory toxicity and mechanisms of acute cadmium (Cd) exposure in the freshwater crab Sinopotamon yantsekiensi, the crabs were exposed to 0, 7.25, 14.5, 29, 58 and 116 mg/L of Cd^{2+} for 1, 3, 5, 7 d and the activities of superoxide dismutase (SOD), guaiacol peroxidase (GSH-Px), catalase (CAT) were determined, as well as the content of malonyldialdehyde (MDA) in the spermaries. The results showed that the activities of SOD, CAT and GSH-Px were increased initially and decreased subsequently with the increasing concentration of Cd^{2+} and exposure periods. However, the content of MDA was continually increased. These results suggest that Cd is clearly toxic to spermaries in the freshwater crab, and the mechanism might be associated with the changes of antioxidant enzyme activities and the increased lipid peroxidation.

Key words: Sinopotamon yantsekiensi; spermaries; oxidative damage; reproductory toxicity; cadmium

镉对雄性生殖系统的影响已受到普遍关注。国内外许多研究显示,镉对雄性生殖器官发生结构和功能上的退行性变化,从而引起生殖障碍,精子运动能力改变,甚至不育等(Ralph et al., 1992)。一些研究资料认为,镉对睾丸中的一些酶活性的影响可能是其生殖毒性发生的重要机制(Kara et al., 2007)。但上述研究大多集中在哺乳类动物,有关镉对甲壳动物雄性生殖毒性及其作用机制的研究国内外鲜见报道。本文以长江华溪蟹 Sinopotamon yantsekiensi 为研究对象,通过观察镉暴露对精巢抗氧化酶活性和脂质氧化物含量的影响,为探讨镉对雄性生殖系统的毒性及其机理提供科学依据。

1 材料与方法

1.1 实验动物

长江华溪蟹(简称“溪蟹”)于2009年11月购自山西省太原市五龙口东安水产批发市场,置于实验室内水族缸中暂养两周以上。

1.2 主要试剂

氯化镉(CdCl_{2}·2.5H_{2}O) (Cd^{2+})（分析纯）, 在实验前用蒸馏水配成 20 000 mg/L 的溶液备用。超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)、丙二醛(MDA) 和蛋白含量试剂盒均购自南京建成生物工程研究所。

1.3 实验设计和样品制备

实验设计7.25, 14.5, 29, 58, 116 mg/L 5 个Cd^{2+}浓度组和1个空白对照组,每组3个平行。每个平行5只个体。1、3、5、7 d 后,从各组随机选取3~5只溪蟹,取精巢称重后置-80℃冰箱保存。

实验时按1:9 (m: v) 比例在各组中加入预冷生理盐水(0.86%), 用玻璃匀浆器在冰上制备10%的组织匀浆液,经4℃离心10 min (4000 r/min), 取上清, 按照试剂盒说明书测定3种酶活力, MDA 和蛋白含量。
1.4 统计分析

数据分析采用 SPSS 15.0 软件, 所得结果均用平均值± 标准差(\(\bar{x} \pm s \))表示, 处理组与对照组的差异比较采用单因素方差分析法, \(P < 0.05 \) 为显著差异, \(P < 0.01 \) 为极显著差异。

2 结果

2.1 镉对长江华溪蟹精巢 SOD 活性的影响

如图 1 所示, 同一时间不同浓度, 1 d SOD 活性差异不明显; 随着 \(\text{Cd}^{2+} \) 浓度的增加, 5 d, 7 d SOD 活力先升后降; 3 d 略微升高, 且在 58 mg/L 和 116 mg/L 浓度较对照组差异显著 \((P < 0.05) \)。同一浓度不同时间, 有时效性关系, SOD 活力也出现先升后降, 5 d, 14.5 mg/L 达到最大, 7 d, 116 mg/L 降至最低, 抑制生精细胞及睾丸间质细胞, 促生精细胞的发育。对照组有显著性差异 \((P < 0.01) \)。

![图 1: 镉对长江华溪蟹精巢 SOD 活性的影响](image)

\[* \ P < 0.05, \ \ * * \ P < 0.01 \]

2.2 镉对长江华溪蟹精巢 GPx 活性的影响

由图 2 可知, 同一时间不同浓度, 伴随 \(\text{Cd}^{2+} \) 浓度增加, GPx 活力基本出现先升后降。其中, 1 d GPx 活性差异不明显; 3 d, 29 mg/L 较对照组差异显著 \((P < 0.05) \)。同一浓度不同时间, 基本呈现逐渐升高的趋势, 7 d, 29 mg/L 达到最大, 较对照组差异显著 \((P < 0.01) \)。但 116 mg/L 浓度组逐渐降低, 且在 7 d 时最低, 抑制生精细胞及睾丸间质细胞, 促生精细胞的发育。对照组有显著性差异 \((P < 0.01) \)。

![图 2: 镉对长江华溪蟹精巢 GPx 活性的影响](image)

\[* \ P < 0.05, \ \ * * \ P < 0.01 \]

2.3 镉对长江华溪蟹精巢 CAT 活性的影响

从图 3 看出, 同一时间不同浓度, CAT 活力先升后降。1 d CAT 活性差异不明显; 3 d, 29 mg/L 较对照组有显著性差异 \((P < 0.05) \)。同一浓度不同时间, 基本呈现逐渐升高的趋势, 7 d, 14.5 mg/L 达到最大, 较对照组差异显著 \((P < 0.01) \)。

![图 3: 镉对长江华溪蟹精巢 CAT 活性的影响](image)

\[* \ P < 0.05, \ \ * * \ P < 0.01 \]

2.4 镉对长江华溪蟹精巢 MDA 含量的影响

从图 4 可知, 同一时间不同浓度, MDA 含量逐渐升高, 1 d MDA 含量差异不明显, 7 d, 116 mg/L 达到最大, 较对照组差异显著 \((P < 0.01) \)。同一浓度不同时间, 基本呈现逐渐升高的趋势。

![图 4: 镉对长江华溪蟹精巢 MDA 含量的影响](image)

\[* \ P < 0.05, \ \ * * \ P < 0.01 \]

3 讨论

镉能干扰生物有机体氧化与抗氧化之间的平衡而诱导氧化损伤, 对多种器官和组织产生毒性作用。研究发现, 镉对长江华溪蟹精巢 SOD、CAT 活性及 MDA 含量的影响。通过生精细胞及睾丸间质细胞的发育, 促生精细胞的发育, 从而导致体内抗氧化酶活性和脂质过氧化物含量发生变化。
SOD 是生物体内抗氧化防御系统的重要酶之一，是生物体抵抗氧化损伤的第一道防线，可清除超氧阴离子自由基，保持体内自由基代谢平衡，从而保护细胞免受损伤。SOD 清除氧自由基的能力与其含量和活性有关。许多研究表明，低浓度毒物可使生物体内 SOD 活性升高，产生“毒物兴奋效应”；高浓度时，SOD 活性通常受抑制而下降，使生物体活性氧含量累积，导致生物体损害（Cao et al., 2010）。本研究结果表明，镉处理 1 d，溪蟹精巢中 SOD 活性较对照组无显著性差异，而其他研究显示其肝胰腺和鳃中 SOD 活性却呈现显著性差异（闫博等, 2007; 李涌泉等, 2008）。这可能是因为组织差异和生理功能不同造成的。具有解毒作用的肝胰腺和呼吸作用的鳃极易吸附水环境中的镉，而具有生殖功能的精巢由于血睾屏障的存在，一定程度上阻碍了镉的进入（石之虎等, 2008）。但是，随着时间的延长，血睾屏障被打破，精巢中 SOD 活性表现出先升后降的趋势，此结果与肝胰腺和鳃中一致。

CAT 和 GPX 是细胞内另外两种重要的抗氧化酶，它们共同作为生物体抵抗氧化损伤的第二道防线。CAT 能够促进 H$_2$O$_2$ 转化成水，具有保护酶的作用；GPX 能催化 H$_2$O$_2$ 的还原反应，对由活性氧和羟自由基诱发的脂质过氧化物及过氧化氢有极强的清除能力，从而保护生物大分子和生物膜结构免受氧化损伤。本实验中，CAT 和 GPX 活性随着镉暴露时间的延长和浓度的升高呈现一致的变化，均表现出先升后降的趋势。在 14.5 mg/L 浓度的 5 d 和 7 d 时均被极显著诱导（P < 0.01），由此说明 CAT 与 GPX 表现出协同作用，共同清除 SOD 抑制超氧阴离子产生的过氧化氢，保护机体免受活性氧自由基的损伤，此结果与本课题组的研究结果基本一致（闫博等, 2007; 李涌泉等, 2008; 刘娜等, 2008）。

MDA 是一种高活性的脂质过氧化产物，能交联脂类、核酸、糖类及蛋白质，破坏膜的结构，导致细胞质膜受损，且 MDA 的含量与膜结构的损伤程度呈正相关。本实验中，精巢 MDA 含量随着镉处理时间的延长和浓度的增加均呈现逐渐升高的趋势，并在 116 mg/L 时含量达到最大，较对照组呈极显著差异（P < 0.01）。这可能是由于随着 Cd$^{2+}$ 浓度的增高及时间的延长，机体抗氧化酶活性降低或者酶结构遭到破坏而丧失活性，导致体内自由基累积，加剧了膜脂质过氧化，使膜的结构和功能遭受破坏，MDA 含量迅速升高，进而引起一系列生理生化代谢紊乱，甚至死亡（El-Heni et al., 2008）。故 MDA 明显的变化趋势可作为体镉污染的标志物。

综上所述，镉暴露不仅能导致溪蟹精巢氧化应激水平的升高，而且可以通过诱导精巢组织脂质过氧化引起的膜结构的损伤，从而导致遗传毒性。但是否会导致精巢细胞凋亡，还有待于进一步研究。

4 参考文献

El-Heni J., Messaoudi I., Hammouda F., et al. 2008. Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver and kidney of the rat; Histology and Cd accumulation[J]. Food and Chemical Toxicology, 46 (11): 3522 - 3527.

Kara H., Cevik A., Konar V., et al. 2007. Protective Effects of Antioxidants Against Cadmium induced Oxidative Damage in Rat Testes[J]. Biological Trace Element Research, 120; 205 - 211.

