山东昆嵛山细形山地涡虫染色体组型的研究
胡晓风，王晓安*

摘要: 首次报道了胶东半岛昆嵛山细形山地涡虫 Phagocata vivida 的形态特征,运用组织再生的方法获得中期分裂相分析了体细胞染色体组型, 其 2 倍体细胞具有 36 条染色体, 核型公式为: 2n = 2x = 10m + 26sm, 并与产于日本的细形山地涡虫核型进行了比较, 发现二者染色体数目相同, 但核型参数存在一定差别。

关键词: 细形山地涡虫; 染色体; 核型; 昆嵛山

Karyotype Studies of Phagocata vivida from Mountain Kunyu

HU Xiao-feng, WANG Xiao-an*

(School of Life Science, Ludong University, Yantai, Shandong Province 264025, China)

Abstract: The morphological character of Phagocata vivida from Mt. Kunyu over Shandong-Peninsula was reported for the first time. The karyotype of somatic cell from regeneration tissue of this planarian was also analyzed. The results indicated: the chromosome number of the diploid somatic cells is 36 with a chromosome formula of 2n = 2x = 10m + 26sm. Comparing the karyotype with same species distributed over Japan, both have a uniform chromosome number but with a different chromosom type.

Key words: Phagocata vivida; chromosome; karyotype; Mt. Kunyu

涡虫属扁形动物门自由生活类群, 全世界已知 4000 多种 (Tyler et al., 2010)。扁形动物首次出现了中胚层和两侧对称体制, 是动物进化和系统发育研究的重要对象, 开展涡虫生物学的研究对于揭示高等动物的许多功能具有一定参考价值 (Sanchez et al., 2002)。其中染色体核型研究是开展涡虫细胞遗传学分析的基础, 也是涡虫分类和进化研究的重要参考依据 (Novikova et al., 2006)。涡虫核型分析还可以为生态环境评价提供参考依据 (Roca et al., 1992; Kalafatic & Taborska, 1998; Harath et al., 2004; Kalafatic et al., 2004a)。

三肠目涡虫具有极强的再生能力, 其再生组织中大量的分裂相为核型分析提供了丰富的材料来源。国外有关 Dugesia (Dutrillaux & Lenique, 1971; Gremigni et al., 1980, 1982; Gourbault, 1981; Galleni et al., 1986; Pellicciari et al., 1986; Rocca et al., 1992; Oki et al., 1995; Paling et al., 1995, 1999; Filippi et al., 1998; Charni et al., 2004; Stocchino et al., 2004)、Polycehis (Dutrillaux & Lenique, 1971; Teshirogi & Ishida, 1998) 的核型研究。
1981; Teshirogi et al., 1991; Beukeboom et al., 1998; Kalafatic et al., 2004b) 两个属的研究已有大量文献报道，其他类群 Girardia (Benya et al., 2007), 1971; Rocca et al., 1992), Bidellocephala (Oki et al., 1998; Nikiforov et al., 2006), Phagocata (Roca et al., 1992; Oki et al., 1998) 几个属的研究相对较少。国内有关扁虫染色体的研究主要集中在三角扁虫 Dugesia (马金余等, 2003, 2004; 张亮, 黄诗笺, 2007; 马克等, 2008; 高艳等, 2009) 以及多目扁虫 Polyceles sutaihianensis (陈广文等, 2008)。

国内关于细形山地涡虫 Phagocata vivida 的研究很少，仅见报道在我国的大兴安岭、小兴安岭、长白山等地首次发现该种的分布(刘德增, 1990) 和关于生长的微调控结构研究(王秋雨等, 1994)。笔者近年陆续在山东省胶东地区的昆嵛山、圣经山、牙山等地发现有该种分布。本文对产于昆嵛山的细形山地涡虫的核型进行观察，并与分布于日本的细形山地涡虫染色体组型进行比较，以期为进一步研究提供细胞遗传学背景资料。

1 实验材料与方法

1.1 实验材料

实验用细形山地涡虫采自山东省烟台市牟平昆嵛山 (37°16′.214″N, 121°44′.240″E, 海拔 210 m), 经实验室长期饲养稳定后用于鉴定和核型研究。

1.2 实验方法

1.2.1 染色体标本的制备 涡虫再生组织染色体标本制备方法参照文献(李光鹏, 1992; 刘翔, 方超, 2004)。

1.2.2 计数与测量 选取采自昆嵛山的 10 只涡虫用于核型研究。在 100 × 显微镜下选取染色体分散良好的细胞 100 个以上，统计染色体数目。选取 10 个来自不同个体，着丝粒清晰，分散好、背景清晰、染色体平直的中期分裂相，用 Olympus BX50 型万能显微摄影显微镜 100 × 油镜下拍照，运用图像分析软件 IPP5. 0 进行数据测量，计算每一染色体的相对长度、臂比和着丝粒指数，3 者数据相近的配成一对，按相对长度分组编号。核型参数按 Levan 等 (1964) 的方法确定。

2 结果

2.1 细形山地涡虫的形态特征

细形山地涡虫属三肠目 Tricladida 扁平涡虫科 Planariidae 细形涡虫属 Phagocata。虫体扁平细长，体长可达 15~20 mm, 宽 2~3 mm。背面一般灰褐色到黑色，新长成的小型个体色较浅，腹面灰白色。头部前缘稍突出，前外侧的耳突发达。眼点一对。口位于腹部中央稍后的体 1/3 处。咽中等大小，位于体中部，取食时伸出咽管可达 5 mm 左右。其生活时形态见图 1(插页Ⅰ)。

2.2 中期分裂相数据统计

在镜下观察涡虫再生组织细胞的中期分裂相，并进行染色体计数，细形山地涡虫细胞中期分裂相中，染色体数为 36 条的占 94%；根据测量结果配对后的染色体组型如图 2(插页Ⅰ) 所示，核型参数分析结果见表。最大染色体相对长度约为最小的 4.2 倍；有 5 组为中着丝粒染色体，13 组为亚中部着丝粒染色体。核型公式为: 2n = 2x = 10m + 26s。

表 细形山地涡虫核型参数

<table>
<thead>
<tr>
<th>染色体编号</th>
<th>相对长度</th>
<th>臂比</th>
<th>着丝粒指数</th>
<th>染色体类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of chromosome</td>
<td>Relative length</td>
<td>Arm ratio</td>
<td>Centromere index</td>
<td>Chromosome type</td>
</tr>
<tr>
<td>1</td>
<td>14.09 ± 0.85</td>
<td>1.01 ± 0.01</td>
<td>49.64 ± 0.13</td>
<td>m</td>
</tr>
<tr>
<td>2</td>
<td>9.11 ± 0.41</td>
<td>2.03 ± 0.03</td>
<td>33.00 ± 0.30</td>
<td>sm</td>
</tr>
<tr>
<td>3</td>
<td>6.85 ± 0.41</td>
<td>2.05 ± 0.23</td>
<td>32.86 ± 2.51</td>
<td>sm</td>
</tr>
<tr>
<td>4</td>
<td>6.28 ± 0.48</td>
<td>2.43 ± 0.33</td>
<td>29.31 ± 2.83</td>
<td>sm</td>
</tr>
<tr>
<td>5</td>
<td>5.64 ± 0.05</td>
<td>2.40 ± 0.02</td>
<td>29.30 ± 0.19</td>
<td>sm</td>
</tr>
<tr>
<td>6</td>
<td>5.53 ± 0.24</td>
<td>1.57 ± 0.05</td>
<td>38.96 ± 0.76</td>
<td>m</td>
</tr>
<tr>
<td>7</td>
<td>4.95 ± 0.10</td>
<td>1.97 ± 0.03</td>
<td>33.63 ± 0.34</td>
<td>sm</td>
</tr>
<tr>
<td>8</td>
<td>4.91 ± 0.13</td>
<td>1.82 ± 0.05</td>
<td>35.43 ± 0.69</td>
<td>sm</td>
</tr>
<tr>
<td>9</td>
<td>4.64 ± 0.11</td>
<td>1.80 ± 0.06</td>
<td>35.68 ± 0.81</td>
<td>sm</td>
</tr>
<tr>
<td>10</td>
<td>4.62 ± 0.24</td>
<td>2.56 ± 0.10</td>
<td>28.09 ± 0.83</td>
<td>sm</td>
</tr>
<tr>
<td>11</td>
<td>4.56 ± 0.21</td>
<td>2.19 ± 0.06</td>
<td>31.34 ± 0.54</td>
<td>m</td>
</tr>
<tr>
<td>12</td>
<td>4.52 ± 0.08</td>
<td>2.04 ± 0.05</td>
<td>32.91 ± 0.54</td>
<td>sm</td>
</tr>
<tr>
<td>13</td>
<td>4.48 ± 0.08</td>
<td>1.83 ± 0.03</td>
<td>35.39 ± 0.36</td>
<td>m</td>
</tr>
<tr>
<td>14</td>
<td>4.40 ± 0.10</td>
<td>1.54 ± 0.01</td>
<td>39.41 ± 0.08</td>
<td>m</td>
</tr>
<tr>
<td>15</td>
<td>4.30 ± 0.26</td>
<td>1.21 ± 0.08</td>
<td>45.20 ± 1.72</td>
<td>m</td>
</tr>
<tr>
<td>16</td>
<td>4.17 ± 0.42</td>
<td>1.36 ± 0.06</td>
<td>42.32 ± 1.02</td>
<td>m</td>
</tr>
<tr>
<td>17</td>
<td>3.57 ± 0.04</td>
<td>1.91 ± 0.09</td>
<td>34.41 ± 1.01</td>
<td>sm</td>
</tr>
<tr>
<td>18</td>
<td>3.38 ± 0.20</td>
<td>1.82 ± 0.07</td>
<td>35.47 ± 0.93</td>
<td>sm</td>
</tr>
</tbody>
</table>

*文献报道的细形山地涡虫日本种群染色体臂比平均值；m. 中部着丝粒染色体 (metacentric chromosomes), sm. 亚中部着丝粒染色体 (submetacentric chromosomes)
图1 昆嵛山细长山地涡虫生活标本照
(左. 背面观，右. 腹面观)
Fig. 1 Photograph of a living specimen of *Phagocata vivida* from Mt. Kunyu
(Left. Dorsal view. Right. Ventral view)

图2 昆嵛山细长山地涡虫体细胞中期分裂
相染色体核型(图中比例尺=5 μm)
Fig. 2 The metaphase and karyotype of neoblasts of *Phagocata vivida* from Mt. Kunyu (Scale bar=5 μm)
3 讨论

随着新生代第四纪冰川的消融，朝鲜海峡形成后使日本列岛与大陆分离（阎恒凯，1979），而渤海海峡断裂下陷使山东半岛与北部长白山脉亦分离，从而造成这几个区域间的地理隔断，生物的遗传多样性也因此更加丰富。有文献报道在东北地区的兴安岭、小兴安岭和长白山以及日本、朝鲜半岛，俄罗斯远东地区都发现有细形山地涡虫分布（刘德增，1990）。我们在胶东地区首次发现了细形山地涡虫的分布。该种群与分布于日本和我国东北地区的种群有着怎样的关系？从生活习性来看，细形山地涡虫属于淡水生的冷水性种类，已知的几个分布地之间均有大海相隔，很难进行自然扩散，人和携带扩散的可能性也极小。因此推测分布于日本、我国东北地区和胶东地区的细形山地涡虫极有可能是伴随地壳变动而残留下的土生种。

关于细形涡虫属核型研究的报道表明，该属涡虫的染色体核型变化较大（Teshirog et al., 1980）。分布在日本的*Phagocata teshirogi*, *P. kawakatsui*, *P. papilifera* 和 *P. suginoi* 4 种的核型十分相似，其2n = 24，n = 12。在欧洲分布的 *P. (Fonticola) ritta* 的染色体数目有 8 种类型，分别为 21.28，35，42，49，56，63 和 70 条，均为7的倍数，另外3种分别为 *P. albissima* (2n = 36)，*P. parvata* (2n = 34) 和 *P. dalmatica* (2n = 32)。细形山地涡虫日本种群的染色体有中部着丝粒（距比：1.00～1.70）和亚中部着丝粒（距比：1.71～3.00）两种类型，其核型为2n = 36，n = 18（Teshirog et al., 1980）。本研究中对细形山地涡虫种群的核型变化观察结果与此基本一致。两个种群的染色体数目相同，但核型参数存在一定差异（图3），根据Levan 染色体分类标准，距比值 1.7 为中部着丝粒染色体和亚中部着丝粒染色体分界值，图中染色体臂比值>1.7 的为亚中部着丝粒染色体，染色体臂比值<1.7 的为中部着丝粒染色体。由图可见二者的第一对，4, 6, 14, 15, 16 号都为中部着丝粒染色体，第 2, 3, 5, 7, 10, 11, 12, 13, 17, 18 号都为亚中部着丝粒染色体。仅 4, 8, 9 号染色体的类型不同，尤其是4号染色体的着丝粒位置差别尤为明显，可见二者在细胞遗传水平上已表现出多样性。其具体的研究程度和遗传距离还有待运用分子系统学手段进一步深入研究。

4 参考文献

陈广文，王英丽，王惠玲，等。2008。中国五台山多目涡虫（涡虫纲，三肠目）染色体及核型分析[J]。动物分类学报，33(3)：449～452。

高艳，高寒，张世聪，等。2009。中国淡水三肠涡虫的核型分析[J]。氨基酸与生物资源，31(1)：40～43。

李光鹏。1992。淡水涡虫染色体的制备方法[J]。动物学杂志，27(5)：30～31。

刘德增。1990。树枝肠科涡虫和细形山地涡虫在中国首次发现[J]。动物分类学报，15(1)：124～127。

刘翔，方艳。2004。淡水涡虫染色体的制备方法[J]。氨基酸与生物资源，26(4)：30～31。

马金友，陈广文，刘德增。2004。中国淡水三肠涡虫染色体变化与生殖的关系[J]。动物学杂志，39(5)：25～29。

马金友，吕九全，陈广文，等。2003。中国淡水三肠涡虫（Dugesia sp.）的染色体研究（I）[J]。遗传学报，30(11)：1045～1050。

马世甲，陈广文，刘德增。2008。中国淡水三肠涡虫（Dugesia sp.）的染色体研究（II）[J]。四川动物，27(5)：751～753。

王秋燕，李堂，李国华，等。1994。细形山地涡虫（Phagocata ritta）眼的超微结构研究[J]。辽宁大学学报（自然科学版），21(2)：85～88。

阎恒凯。1979。日本列岛的形成及其构造体系[J]。辽宁师院学报（自然科学版），4(1)：1～6。

张绍、黄诗壁。2007。中国淡水三肠涡虫染色体组的构造研究[J]。水生生物学报，31(3)：393～396。

Dutrillaux B, Lenique P. 1971. Analyse du caryotype de cinq espèces de

Gourhault N. 1981. The karyotypes of Dugesia species from Spain (Turbellaria, Tricladiida) [J]. Hydrobiologia, 84(1); 45 – 52.

Novikova O, Naumova T, Timoshkin O. 2006. Karyotypes and current approaches to the systematics of endemic Baikal representatives of Bello- coephalus genus (Turbellaria, Dendrocoelidae) [J]. Hydrobiologia, 568(Suppl.1); 183 – 191.

Oki I, Tamura S, Takai M, et al. 1995. Chromosomes of temnocephala minor, an ectosymbiotic turbellarian on Australian crayfish found in kagoshima prefecture, with karyological notes on exotic turbellarians found in Japan [J]. Hydrobiologia, 305(1-3); 71 – 77.

Pala M, Vacca RA, Casu S, et al. 1995. The fresh water planarian Dugesia sicula lepori from Sarlina (Platyhelminthes, Tricladiida) [J]. Hydrobiologia, 310(2); 151 – 156.

