Habitat Selection of the Released Hainain Eld’s Deer in Houming Nature Reserve

WANG Li-bing1, YAN Heng-mei1, LU Xue-li2+, YUAN Xi-cai2, TAO Fu-wen3, ZHAO Ren-dong3
(1. School of Life Sciences, Hunan Normal University, Changsha 410081, China; 2. Guangdong Institute of Entomology, Guangzhou 510260, China; 3. Hainan Houming Nature Reserve, Dongfang, Hainan Province 572600, China)

Abstract: By calculating Vanderploug and Scavia’s selection index (E_s), 10 ecological factors were measured and used to analyze habitat selection characteristics of the released Hainain eld’s deer (Cerbus eldii hainanus) in Houming Nature Reserve, Hainan province. The results indicated that Hainain eld’s deer preferred meadows and tropic monsoon secondary forests at elevations less than 300 m, with mid-canopy, lower shrub cover and shady, half sunny, low and non-slope positions, lesser slopes, and a distance from water source less than 200 m and a distance from human disturbance exceeding 5000 m. According to the results, the related implications of conservation and management were proposed in the article.

Key words: Houming nature reserve; Cerbus eldii hainanus; habitat selection; conservation
1991, 1994; 袁喜才等, 1996; 孙丽凤等, 2009), 但主要研究对象为半野放坡鹿, 其研究地点局限于海南大田国家级自然保护区及周边有限区域, 而该地地势低平, 生境条件相对简单。本研究则针对半野放坡鹿综合考虑多种生态因子, 探讨其在复杂的山地环境中的生境选择特征。

1 自然概况

海南猕猴省级自然保护区位于海南省东方市, 位于东经 108°57′15"～109°07′21", 北纬 18°48′33"～18°58′17", 总面积为 1215.33 hm²。全年日照时间长, 气温高, 多寒少且干燥, 干湿季明显。年均气温 24.6℃, 年均降雨量 1490 mm, 年均相对湿度 80%。地貌属低山-丘陵地貌, 北部、西部和南部等区域的海拔不超过 800 m, 东部边缘中山地貌, 最高海拔 1530.2 m。主要植被类型有草本地, 灌丛、热带雨林和亚高山矮林。

从 2003 年至 2005 年, 共有 296 头半野放坡鹿在此地进行野放。据 2007 年统计, 该地种群个体数量已增至 500 多头。

2 研究方法

2.1 样方设置和生态因子测定

2008 年 10 月至 2009 年 10 月, 根据海南坡鹿分布记录与当地环境条件, 在保护区设置 5 条样线, 直线长度 >500 m, 沿样线随机设点, 向着垂直于等高线的方向每隔 50 m (海拔高度, 设 1 个 10 m x 10 m 的固定样方, 并在固定样方的四角各布设 1 个 2 m x 2 m 小样方, 测量记录样方的植被类型、郁闭度、灌木盖度、草本盖度、坡度, 坡位, 坡向, 海拔, 水源距离, 人为干扰距离等 10 个生态因子。调查期间每月对所有样方检查 1 次, 记录样方内是否有坡鹿或其新近活动的痕迹 (足迹, 粪便, 食迹等)。调查时, 有坡鹿实体或近新活动痕迹的样方, 标记为坡鹿利用样方, 否则标记为坡鹿未利用样方。共记录了 150 个坡鹿利用样方和 380 个坡鹿未利用样方。生态因子的含义与分类如下:

植被类型分为草本、次生热带雨林, 热带湿润雨林, 热带山地雨林, 亚高山矮林 5 种。

郁闭度为林冠的投影面积与林地面积之比, 目测为 4 级, 即: 40% 以下, 40% ~ 60%, 60% ~ 80%, 80% 以上。

灌木盖度为 4 个 2 m x 2 m 正方形样方中灌木的平均盖率, 分为 4 级, 即: 20% 以下, 20% ~ 40%, 40% ~ 60%, 60% 以上。

草本盖度为 4 个 2 m x 2 m 正方形样方中草本的平均盖率, 分为 4 级, 即: 15% 以下, 15% ~ 30%, 30% ~ 45%, 45% 以上。

坡向分为阳坡 (S67.5° E ~ S22.5° W)、半阳半阳坡 (N22.5° E ~ S67.5° E 和 S22.5° W ~ N67.5° W)、阴坡 (S67.5° W ~ N22.5° E) 和无坡向 (平地) 4 级。

坡位分为坡上位 (坡上部 1/3)、坡中位 (坡中部 1/3)、坡下位 (坡下部 1/3) 和无坡位 (平地) 4 级。

坡度分为平缓坡 (20° 以下)、中上坡 (20° ~ 40°)、中上坡 (40° ~ 60°) 和陡坡 (60° 以上) 4 级。

海拔分为 150 m 以下, 150 ~ 300 m, 300 ~ 450 m 和 450 m 以上 4 级。

水源距离为样方中心到河流、水库等水源的最近垂直距离, 分为 4 级, 即: 200 m 以下, 200 ~ 400 m, 400 ~ 600 m, 600 m 以上。

人为干扰距离以离居民点、林业作业点、公路等的距离确定。样方中心到干扰源的水平距离, 分为 4 级, 即: 3000 m 以下, 3000 ~ 4000 m, 4000 ~ 5000 m, 5000 m 以上。

2.2 数据处理

根据 Vanderploeg 和 Scavia 的选择系数 (W_i) 与选择指数 (E_i) (Chesson, 1978; Lechowic, 1982), 分析海南坡鹿的生境选择特征。E_i 的计算公式如下:

\[E_i = \frac{W_i - 1/n}{W_i + 1/n} \]

式中: E_i 值在 -1 到 +1 之间取值, 表示海南坡鹿对第 i 类生境的选择程度, n 是第 i 类生境中的可利用样方数量。W_i 是一种选择系数 (Chesson, 1978), 计算方法如下:

\[W_i = \frac{r_i}{\sum r_i/p_i} \]

式中: r_i 表示第 i 类生境中的可利用率; r_i 表示第 i 类生境中的利用率。

以 \chi^2 检验确定海南坡鹿在第 i 类生境中的利用样方数量和基于随机选择的理论利用样方数量差异的统计显著性。基于随机选择的理论利用样方数量等于利用样方总数乘以第 i 类生境的可利用率。根据 E_i 值及统计显著性, 海南坡鹿对第 i 类生境的选择性被分为选择、随机和避免 3 种类型。

3 结果

从选择系数 W_i 的计算结果 (表 1) 看出, 海南坡
鹿经常在次生热带雨林和草地活动，很少到亚高山矮林、热带山地雨林和热带湿润雨林活动。从植被特征来看，海南坡鹿对郁闭度、灌木盖度和草本盖度等生态因子均具有明显的选择性，经常活动于郁闭度（60%以下）和灌木盖度（40%以下）均较低而草本盖度（30%以上）较高的生境，而很少利用郁闭度（60%以上）和灌木盖度（40%以上）较高而草本盖度（30%以下）低的地区。从地理特征来看，海南坡鹿多选择在半高半低地活动，其生境常选择在半高半阳坡、下坡位或山脚平地，坡度较小（20°以下）和海拔较低（300 m以下）的区域。另外，海南坡鹿倾向于选择距水源较近，（水源距离200 m内），人为干扰较少（人为干扰距离3000 m以上）的区域。

表1 猴岭自然保护区野放海南坡鹿对生境的选择

<table>
<thead>
<tr>
<th>生态因子</th>
<th>变量</th>
<th>变量</th>
<th>W_i</th>
<th>E_i^+</th>
<th>选择情况</th>
</tr>
</thead>
<tbody>
<tr>
<td>被类型</td>
<td>亚高山矮林</td>
<td>0</td>
<td>2.30%</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>热带山地雨林</td>
<td>8.67%</td>
<td>7.00%</td>
<td>5.08</td>
<td>-0.59</td>
</tr>
<tr>
<td></td>
<td>热带湿润雨林</td>
<td>46.00%</td>
<td>14.42%</td>
<td>13.09</td>
<td>-0.22</td>
</tr>
<tr>
<td></td>
<td>次生热带雨林</td>
<td>30.00%</td>
<td>3.10%</td>
<td>39.75</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>草地</td>
<td>15.33%</td>
<td>1.50%</td>
<td>42.08</td>
<td>0.36</td>
</tr>
<tr>
<td>郁闭度（%）</td>
<td>0~40</td>
<td>18.00%</td>
<td>2.46%</td>
<td>40.58</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>40~60</td>
<td>16.67%</td>
<td>2.83%</td>
<td>32.61</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>60~80</td>
<td>56.00%</td>
<td>16.93%</td>
<td>18.32</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>>80</td>
<td>9.33%</td>
<td>6.09%</td>
<td>8.49</td>
<td>-0.49</td>
</tr>
<tr>
<td>灌木盖度（%）</td>
<td>0~20</td>
<td>17.33%</td>
<td>2.67%</td>
<td>40.09</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>20~40</td>
<td>31.33%</td>
<td>6.30%</td>
<td>30.71</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>40~60</td>
<td>42.00%</td>
<td>13.78%</td>
<td>18.83</td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td>>60</td>
<td>9.33%</td>
<td>5.55%</td>
<td>10.38</td>
<td>-0.41</td>
</tr>
<tr>
<td>草本盖度（%）</td>
<td>0~15</td>
<td>86.67%</td>
<td>26.86%</td>
<td>12.07</td>
<td>-0.35</td>
</tr>
<tr>
<td></td>
<td>15~30</td>
<td>0.67%</td>
<td>0.16%</td>
<td>15.56</td>
<td>-0.23</td>
</tr>
<tr>
<td></td>
<td>30~45</td>
<td>2.00%</td>
<td>0.21%</td>
<td>35.02</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>>45</td>
<td>10.67%</td>
<td>1.07%</td>
<td>37.35</td>
<td>0.20</td>
</tr>
<tr>
<td>坡向</td>
<td>阴坡</td>
<td>62.00%</td>
<td>19.33%</td>
<td>18.64</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>半阳半阳坡</td>
<td>23.33%</td>
<td>2.94%</td>
<td>46.17</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>阳坡</td>
<td>2.67%</td>
<td>3.79%</td>
<td>4.09</td>
<td>-0.72</td>
</tr>
<tr>
<td></td>
<td>无</td>
<td>12.00%</td>
<td>2.24%</td>
<td>31.10</td>
<td>0.11</td>
</tr>
<tr>
<td>坡位</td>
<td>上</td>
<td>46.67%</td>
<td>6.35%</td>
<td>4.67</td>
<td>-0.69</td>
</tr>
<tr>
<td></td>
<td>中</td>
<td>30.67%</td>
<td>12.34%</td>
<td>15.82</td>
<td>-0.23</td>
</tr>
<tr>
<td></td>
<td>下</td>
<td>52.67%</td>
<td>7.37%</td>
<td>45.47</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>无</td>
<td>12.00%</td>
<td>2.24%</td>
<td>34.04</td>
<td>0.15</td>
</tr>
<tr>
<td>坡度（°）</td>
<td>0~20</td>
<td>70.67%</td>
<td>14.74%</td>
<td>42.17</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>20~40</td>
<td>10.67%</td>
<td>5.39%</td>
<td>17.39</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>40~60</td>
<td>8.00%</td>
<td>3.36%</td>
<td>20.91</td>
<td>-0.09</td>
</tr>
<tr>
<td></td>
<td>>60</td>
<td>10.67%</td>
<td>4.81%</td>
<td>19.52</td>
<td>-0.12</td>
</tr>
<tr>
<td>海拔（m）</td>
<td>0~150</td>
<td>22.00%</td>
<td>2.08%</td>
<td>58.13</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>150~300</td>
<td>63.33%</td>
<td>10.52%</td>
<td>33.13</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>300~450</td>
<td>14.67%</td>
<td>9.24%</td>
<td>8.74</td>
<td>-0.48</td>
</tr>
<tr>
<td></td>
<td>>450</td>
<td>0</td>
<td>6.46%</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>水源距离（m）</td>
<td>0~200</td>
<td>23.33%</td>
<td>3.63%</td>
<td>0.39</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>200~400</td>
<td>24.00%</td>
<td>4.97%</td>
<td>0.30</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>400~600</td>
<td>40.67%</td>
<td>11.21%</td>
<td>0.22</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>>600</td>
<td>12.00%</td>
<td>8.49%</td>
<td>0.09</td>
<td>-0.48</td>
</tr>
<tr>
<td>人为干扰距离（m）</td>
<td>0~3000</td>
<td>7.33%</td>
<td>4.38%</td>
<td>0.11</td>
<td>-0.50</td>
</tr>
<tr>
<td></td>
<td>3000~5000</td>
<td>80.00%</td>
<td>22.64%</td>
<td>0.23</td>
<td>-1.17</td>
</tr>
<tr>
<td></td>
<td>>5000</td>
<td>12.67%</td>
<td>1.28%</td>
<td>0.65</td>
<td>0.33</td>
</tr>
</tbody>
</table>

注：P-选择（Preference）, A-回避（Avoidance）, R-随机（Random）
4 讨论

野生生物对生存的选择往往受到生态系统中许多生态因子的综合影响，而其基本生存条件为食物、水和隐蔽物三大要素（Morrison et al., 1992；孙儒泳，2000）。食物常被认为是决定鸟类生物生存选择的重要因素（Cransac & Hewison, 1997）。坡鹿食性较广，取食植物种类较多，主要采食草本植物、木本植物的嫩枝叶。食物的丰富程度决定了坡鹿对生存的选择（袁喜才等，1996）。植被类型、灌木盖度、草本盖度等生态因子在一定程度上也可反映坡鹿食物结构特征和生存的资源状况。本研究结果指出，坡鹿可选择各种次生或热带雨林、草本盖度较高的区域，反映其对食物资源的需求。虽然坡鹿喜爱许多灌木的嫩枝叶，但它们很少利用灌木盖度较高的区域。显然，稀疏的灌木层不便于坡鹿活动。在猕猴岭地区，由于每年10月到次年3月雨季和水库蓄水，水库水位一直居高不下，大片草地一直处于被水淹没状态，直接导致这一时期坡鹿食物资源相对匮乏，因此建议在水库水源地以上选择适当地点进行植被改造，增加食物资源和活动空间，帮助坡鹿摆脱雨季水淹草地的生存困境。

动物的生存离不开水。本研究结果表明海南坡鹿对接近水源的区域（水源距离200 m内）具有显著的选择性。海南猕猴岭省级自然保护区周边有大广坝水库和大河，区内水资源较为丰富，维持水资源的自然状态，有利于水库、保护水质等当坡鹿的生存具有重要意义。在本研究过程中，调查人员发现与保护区内相邻的大广坝水库出现鱼类死亡，且其上游水质有恶化情况。这些水质变化情况对坡鹿的影响尚不明了，建议保护部门联合库区管理机构，对当地水质进行监测与通报。

郁闭度反映了上层植被对阳光的遮掩情况，不仅反映了动物对隐蔽条件的要求，还间接影响林下可见光的强度和林下植被的生长情况，从而反映了动物对温度和食物资源的要求。根据本研究结果，从全年来看，坡鹿更多活动于郁闭度较低的生境。已有研究表明坡鹿对生境的隐蔽性要求存在季节变化；在春季发情配季节坡鹿喜欢在开阔地方活动；在坡鹿怀孕期、怀孕后期及产仔期坡鹿喜欢在隐蔽条件好的生境中活动，很少到开阔地段活动（袁喜才等，1996）。

海南猕猴岭省级自然保护区属低山-丘陵地貌，与海南大田国家级自然保护区相比，海拔高差更大，山地叠嶂，地形多变，生境复杂多样。根据本研究结果，海南坡鹿选择地势较低、坡度平缓的区域，这与海南大田的坡鹿的生境选择特征类似。两地坡鹿生境选择的相似性反映了海南坡鹿的生境选择有其特殊性，特征差异在一定自然范围内不会因环境而改变。这与“坡鹿生境选择是动物长期进化与适应的结果”这一观点一致。在低、平地区域活动，坡鹿可以通过消耗较少的能量来满足自己的生存需求，从而提高自身对环境的适应性。坡鹿在不同区域，坡面为缓坡，坡度居民点较近，坡度为半阴坡的坡坡可以避开风和回避人为干扰。

坡鹿天性胆小，经常选择人为干扰相对较小的区域。在猕猴岭地区，保护区内管理部门应大力加强巡护，严格执行控制，减少对地植被的破坏，如非法开荒种地和放牧等为主要人为干扰现象。

5 参考文献

【卢学理，袁喜才，彭建华，等。2008。海南坡鹿种群发展动态与保护建议[J]。四川动物，27(1)：138～141。
宋廷彦，李春元。1991。海南坡鹿（Cervus eldi hainanus）仔鹿对母地的选择[J]。兽类学报，11(3)：161～164。
宋廷彦，李春元。1994。海南坡鹿对生境的利用与选择[A]。中国动物学会成立60周年讨论论文集[C]。北京：中国科学技术出版社：457～461。
孙健扬。2000。动物生态学原理(第三版)[M]。北京：北京师范大学出版社。
孙立明，吴勇华，张成。2009。海南坡鹿对食饵场地及食物的选择[J]。动物学杂志，44(3)：36～42。
袁喜才，夏伟，李春元。1996。海南坡鹿对生境的选择[J]。生态科学，1(2)：52～56。
Lechowicz MJ. 1982. The sampling characteristic of elecctivity indices[J]。Oecologia, 52：22～30。
Cransac N, Hewison AJM. 1997。Seasonal use and selection of habitat by mouflon (Ovis gmelini)；comparison of the sexes[J]。Behavioral Process, 41：57～67。】