Population History Dynamics of Plateau Zakor (Eosupalax baileyi)

TANG Li-zhou1,2, YU Long1, CHEN Jian-gang1, ZHU Lei1, WANG Jun-jie1, DING Wei*, SU Jian-ping2*
(1. Yunnan-Guizhou Plateau Institute of Biodiversity, Qujing Normal University, Qujing, Yunnan Province 655011, China; 2. Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining 810001, China)

Abstract: The population dynamics of the entire distribution area and four geographical populations of plateau zokor (Eosupalax baileyi) were studied by sequencing the cytochrome b gene. The results showed that the population fluctuated most tempestuously and the effective population size appeared the highest and the lowest between 0.33 and 0.16 million years ago (Ma). The population size retained univiable stabilization levels between 0.16 and 0.08 Ma. In addition, the effective population size presented a slow shrinking without sudden increases or decreases from 0.08 Ma to now. Those findings all suggest that the Penultimate Glaciation induced the sudden decreasing or fluctuation of the effective population size of this species. Furthermore, population size corresponding to stable levels happened during the interglacial stage, whereas, the Last Glaciation only restricted the increase of effective population size instead of resulting in population collapse or extinction.

Key words: plateau zokor (Eosupalax baileyi); population history dynamic; effective population size; evolution rate; ice age
群扩张或缩小起到关键作用？这一系列的疑问同样是我们亟待解决的分子系统地理学的内容。因此，本研究以线粒体细胞色素 b 基因为分子遗传标记，根据有效种群大小随历史时间发生改变的趋势，追溯高原鼢鼠种群历史动态，并分析种群动态变化的主要历史成因。

1 材料与方法

1.1 采样与 DNA 提取

实验用187只高原鼢鼠，分别来自青海、甘肃和四川4个地理种群的17个地点(表1)。野外采集样本即剖取腿部肌肉组织2 g 左右，并置于95%乙醇中固定保存(蔡振辉等，2007)。参照Sambrook等用蛋白酶K-苯酚/氯仿法(Joe & David, 2001)抽提基因组总 DNA。

1.2 PCR 扩增与序列测定

用成对引物Li14724(5'-C G GA T G A TG A AAA CCA TGC TTT GGA-3')和H15917(5'-C G AT T TTT TAC TTT GGA-3')(Zhou et al., 2004)扩增线粒体细胞色素 b(Cyt b)基因。其反应体积为30 μL，包括10 mM Tris-HCl(pH 8.0)，1.5 mM MgCl₂, 50 mM KCl, 4 μL dNTP各150 mM, 2个引物各0.3 mM, 0.4 μL模板DNA,以及1 U Taq 酶。反应条件为95℃预变性5 min，然后95℃变性40 s，53℃退火1 min, 72℃延伸1.5 min, 运行31个循环，最后72℃续延伸7 min。扩产物用柱式 PCR 产物纯化试剂盒(上海生工提供)进行纯化。纯化产物用 Megabase 1000 Automated sequencer 完成序列测定。

1.3 数据处理

1.3.1 线粒体DNA序列比对主要利用Chromas, Clustal X 1.8 (Thompson et al., 1997)软件进行对齐排序，并用于拼接校对。

1.3.2 Cyt b 进化速率估算 从 GenBank 中分别下载8种鼢鼠及中华竹鼠Rhizomyus sinensis的Cyt b基因全序列(表2)，将所有8种鼢鼠作为一个单系群(Monophyletic group)，采用邱锦和李文昌(2004)中竹鼠亚科Myospalacinae 5~12百万人（Million years, Myr）的化石时间作为该单系群的最近年中共同祖先时间（Time of Most Recent Common Ancestor, TM RCA）进行标定，并以竹鼠亚科 Rhizomyinae 的中华鼠为外类群。软件BEAST v. 1.4.7 中 BEA Uti (Drummond & Rambaut, 2007年)程序运行进行相关位置的设置，主要参数值设置分别为：以马尔可夫链 (Markov chain Monte Carlo, MCMC)为搜索策略，以严格分子钟模型(Strict molecular clock model)的物种形成(Speciation)和自优化搜索(Auto optimized search)运行100万次，均能获得合理有效抽样大小(effective sample size,ESS)的收敛结果，ESS一般大于100(Cognato et al., 2006; Drummond & Rambaut, 2007年)；使用较适合于蛋白质编码序列的SRD06模型。最后，用TRACER v. 1.4 (Drummond & Rambaut, 2007年)程序检查并分析收敛状态分布、burn-in 阶段、平均进化速率及95%的自信区间。

1.3.3 种群历史动态分析 采用Modeltest 3.0 (Posada & Crandall, 1998)程序选择的最佳模型(best-fit model)为 HKY + G, 总样本4个碱基的频率分别为：A = 0.2988, C = 0.2982, G = 0.1072, T = 0.3048; Gamma 值为 0.4530, 而转换/颠换比(Ti/Tv) = 10.9988。以 MIGRATE 2.4.4 (Beerli, 2002)的贝叶斯法(Bayesian inference)分析高原鼢鼠种群历史动态，具体参数设置为：以 Fst 估算 Theta 值，所有位点使用不变的突变速率，1个长链,Recorded stages and Increment 各使用1000,使用3次重复和300 000 的 burn-in。MIGRATE 2.4.4 分析获得的种群动态图是以相对时间(Time)对 Theta 值的分布图；横坐标相对时间是以突变率每代(Mutation rate/generation)表示的,我们以 Cyt b 的 2.434×10⁻⁸ 每年碱基平均进
化速率及高原鼢鼠一年一代的繁殖周期（郑生武，1980）进行绝对时间（Age）换算；图中坐标显示的是
Theta 值，依据公式 Theta (θ) = x×有效种群大小（Ne）×μ（突变速率）求算坐标的真实有效种群
大小。x 是指单倍体或多倍体倍数，该值取决于数
据的类型，如核基因数据 x = 4，单倍体数据的
x = 2，脊椎动物线粒体 DNA 的 x = 1，Ne 为有
效种群大小，而 μ 表示遗传率每代每碱基的突变速率。

2 结果

2.1 Cyt b 基因进化速率

BEAST v. 1.4.7 分析结果表明，高原鼢鼠线粒体 Cyt b 平均进化速率为 2.434% 每百万年位点，
95% 自信区间为 1.352% ~ 3.493%，各相关参数
(auto-correlation time) 为 1149.511，有效抽样大小
(ESS) 达到 7830.285，概率密度分布服从正态分布，
说明收敛完整有效，结果可靠。

<table>
<thead>
<tr>
<th>中文名</th>
<th>拉丁名</th>
<th>遗传号</th>
</tr>
</thead>
<tbody>
<tr>
<td>高原鼢鼠</td>
<td>Eospalax baileyi</td>
<td>AF326256</td>
</tr>
<tr>
<td>甘肃鼢鼠</td>
<td>Eospalax canus</td>
<td>AF326261</td>
</tr>
<tr>
<td>中华鼢鼠</td>
<td>Eospalax fontanieri</td>
<td>AF326266</td>
</tr>
<tr>
<td>斯氏鼢鼠</td>
<td>Eospalax smithi</td>
<td>EF530740</td>
</tr>
<tr>
<td>罗氏鼢鼠</td>
<td>Eospalax rothshildii</td>
<td>AF326268</td>
</tr>
<tr>
<td>草原鼢鼠</td>
<td>Myospalax aspalax</td>
<td>AF326272</td>
</tr>
<tr>
<td>东北鼢鼠</td>
<td>Myospalax pallasii</td>
<td>AF326271</td>
</tr>
<tr>
<td>秦岭鼢鼠</td>
<td>Eospalax rufescens</td>
<td>AF326269</td>
</tr>
<tr>
<td>中华鼢鼠</td>
<td>Rhizomys sinensis</td>
<td>AF326274</td>
</tr>
</tbody>
</table>

2.2 种群历史动态

以 MIGRATE 2.4.4 (Beerli, 2002) 的贝叶斯法
(Bayesian inference) 推算高原鼢鼠种群历史动态结
果显示：

(1) 以整个研究区进行分析，可以推测高原鼢
鼠 0.3 百万年前（Million years ago, Ma）以来的种群
动态 (图 1): 0.33 ~ 0.25 Ma, 种群出现了历史最高
的 Ne 值，有效种群大小超过 2 Myr，同时也存在两次
Ne 最低值，有效种群大小及最高值与最低值都处于该
时期，种群剧烈波动；0.25 ~ 0.16 Ma，种群依然波动
较大，基本趋势是 0.25 Ma 左右种群大小显著增加，
于 0.20 Ma 左右达到该期最高值，尔后大约在 0.18
~ 0.16 Ma 时出现“U”型分布特点；0.16 ~ 0.08 Ma 阶
段，种群数量基本保持不变水平，0.12 Ma 左右有一
段上升下降过程，呈现出类似抛物线的分布状态，但
这种波动趋于一种缓和的上下震荡；0.08 Ma 至今，
有效种群大小基本呈现缓慢下降趋势，说明 0.08
Ma 以来的历史事件不会影响种群生存，而只是一定
程度上的限制作用。

(2) 不同地域经历的历史事件强度和时间可能
不尽相同，而且对各地理群种产生的影响也存在差
异，因此我们将所有种群分成 4 个独立种群进行单
独分析，即按照地理分布和区域划分（表 1）。细分
的 4 大种群的历史动态图（图 2）存在一些差异；第
一，在 0.33 ~ 0.25 Ma 间，种群 1 的种群大小早期
基本趋于 0，直到晚期的 0.27 ~ 0.25 Ma 左右才骤
然上升，至 0.25 Ma 达到该期的最高峰值；种群 2 和
种群 4 的种群大小波动基本相同，呈现骤升至骤降，
再到骤升的过程，出现两个高峰值，两者只是在发生
时间上有差异；种群 3 的种群大小波动类似抛物线。
第二，在 0.25 ~ 0.16 Ma 间，种群 1 经历了由骤升至
骤降的变化，类似于“U”型；种群 2 和种群 3 的种群
波动在该阶段比较接近，都遵循了骤升-骤降-缓升-缓
降过程。第三，在 0.16 ~ 0.08 Ma，种群 1 和种群
4 的种群波动时间几乎一致，而仅仅波动幅度大小
有差异，即种群 1 的强度大于种群 4；种群 2 和种群
3 的种群大小波动时间一致，仅是波动强度大小
有差异，表现为前者大于后者。第四，在0.08 Ma 至
今这段时间，种群1和种群2种群大小变化仅存在
波动程度的差异，即种群1大于种群2；另外，种群3
和种群4种群大小波动的时间和强度都趋于一致，
说明两者经历历史事件相同。

3 讨论

种群历史动态的研究结果表明，高原鼠种群
在0.30 Ma以来发生剧烈波动，有效种群大小随进
化时间发生循环震荡，主要以0.30～0.16 Ma 左右
震荡的强度最大（图1），而相应地理种群同样具有
强烈的大小波动（图2），这充分说明过去冰期事件
对高原鼠种群产生了重要影响。首先，整个高原
鼠种群有效种群大小波动主要发生在0.30～0.16
Ma期间，种群经历两次增长及三次下降（图1）；相
比较而言，0.16 Ma之后种群波动趋于缓和状态。
根据焦克勤和沈平平（2003）的研究结果发现，自更
新世以来，青藏高原广大地区发生过三次更新世冰
川作用，即最大冰期（Maximum Glaciation）、倒数第
二次冰期（Penultimate Glaciation）和末次冰期（Last
Glaciation）。倒数第二冰期的分布范围，恢复当时的
冰川规模仅次于最大冰期的冰川规模（焦克勤，沈
水平, 2003)。倒数第二次冰期的发生年代大致为 0.15 ～ 0.32 Ma(郑本兴等, 1990; 王苏明等, 1996; 崔之久等, 1998)。因此, 我们发现高原鼢鼠整个区域种群大小剧烈波动的时间, 与倒数第二次冰期发生时间几乎完全吻合, 这充分说明倒数第二次冰期对高原鼢鼠有效种群大小产生了重要影响。

倒数第二次冰期开始时 (0.30 ~ 0.28 Ma) 冰被覆盖的面积及强度应是此次冰期最强的。大面积冰被覆盖了高原鼢鼠的高海拔和低海拔分布区, 冰被的发展严重抑制天然植被的生长, 造成适宜植被大面积退化或演替; 高原鼢鼠主要以禾本科植物根或茎为食 (王权成等, 2000), 其生境中植被的大幅度退化几乎断绝了高原鼢鼠主要食物来源; 适宜生境几乎消失, 使高原鼢鼠种群数量及种群大小造成影响。早期冰期最大的覆盖深度, 寒冷气候在生出季节性或常年冻土的发育, 影响高原鼢鼠挖掘取食活动及分布扩散能力。因此, 早期冰期的冰影响造成高原鼢鼠种群急剧下降 (图 1)。倒数第二次冰期中期 (0.28 ~ 0.22 Ma), 冰被覆盖面积及强度可能为整个冰期中最小的, 但这一时期具有反复循环的特点, 0.28 Ma 左右的冰被逐渐消退, 出现了一段较短时间的间冰期; 由于自然环境逐渐好转, 气候环境处于较理想状态, 适宜植被恢复, 冻土较大范围消退, 因此高原鼢鼠有效种群大小骤升, 达到了 0.33 Ma 以来的最高水平 (施雅风, 1998)。0.25 ~ 0.22 Ma 前后, 冰期出现了以 3 万年为周期的大小循环, 继而造成高原鼢鼠种群大小出现了由骤降向骤升变化的过程, 并且有效种群大小在 2 Myr 水平保持了几乎 2 万年的水平 (图 1)。倒数第二次冰期晚期 (0.22 ~ 0.16 Ma), 同样受到冰期反复的影响, 高原鼢鼠种群的波动出现了由下降到上升的过程, 但这一阶段上升幅度显著不如前一阶段强度大, 这说明在倒数第二次冰期影响结束阶段, 高原鼢鼠有效种群大小难以再骤升至较高水平, 而只能逐渐上升后维持稳定状态 (图 1)。

另外, 0.13 ~ 0.08 Ma 正好处于末次间冰期, 该时期冰被消退, 气温开始回升, 适宜植被生长, 高原鼢鼠有效种群大小基本趋于稳定分布 (焦克勤, 沈水平, 2003)。末次间冰期后, 0.08 ~ 0.02 Ma 的末次冰期是全新世的最后一次冰期事件, 该事件的影响应该不会对高原鼢鼠产生太大影响, 原因主要是: 末次冰期时, 高原鼢鼠已分化成各地理种群, 各个种群选择了适合其生存的有利生境, 并各自积累变异向独立方向进化 (施雅风, 1998)。距离隔离抑制相邻或较远种群间基因交流, 片段化格局分化形成; 各地理种群内的环境趋于稳定, 少数个体的扩散也仅限于种群内的交流, 不会发生大种群爆发或扩散事件。有可能出现片段化造成的种群瓶颈效应 (Bottle-neck Effect), 一定程度上对有效种群大小产生了抑制作用, 从而表现出 0.08 Ma 以来的缓慢下降趋势 (图 1)。

最后, 我们的研究结果也综合说明, 相同历史事件 (如倒数第二次冰期和末次冰期) 对不同地域性种群也产生了显著影响, 但影响的程度存在一定差异 (图 2): 第一, 倒数第二次冰期影响青藏高原边缘种群的时间要早于高原内部种群。高原边缘种群包括种群 2、3 和 4, 这 3 个地理种群均分布于青藏高原东北边缘区域, 其平均海拔显著低于高原内部种群 (种群 1); 倒数第二次冰期可能先影响到低海拔区域的种群, 而较高海拔区域作用的时间相对要推迟。第二, 倒数第二次冰期对种群 1、2 和 3 的影响几乎造成种群的灭绝, 其强度要明显大于对种群 4 的影响。这种差异的出现合理的解释是, 前 3 个地域种群的分布区域更容易受到冰期冰被的覆盖, 寒冷的外界环境, 适宜植被的退化及冻土的形成可能造成这 3 个种群的瓶颈效应, 从而有效种群大小要显著低于种群 4(图 2)。末次冰期对这些不同地域种群的影响几乎没有太大差异, 这种相同结果一致说明, 末次冰期时这 4 个地域种群已经各自分化, 成为独立进化单元积累变异, 可能成为高原鼢鼠躲避寒冷严酷环境的有利避难所生境。

4 参考文献


施雅风. 1998. 第四纪中期青藏高原冰冻圈的演化及其与全球变化
的联系[J]. 冰川冻土，20(3)：197－208。
王权业，张瑞铭，魏文红，等. 2000. 高原鼢鼠食性的研究[J]. 动物学报，20(3)：193－199。
郑本兴，焦克勤，李世杰. 1990. 青藏高原第四纪冰期年代研究的新进展[J]. 科学通报，(7)：533－537。
郑生武. 1980. 中华鼢鼠的繁殖研究[J]. 动物学研究，1(4)：465－477。
Drummond AJ, Rambaut A. 2007a. BEAST; Bayesian evolutionary analysis by sampling trees[J]. BMC Evolutionary Biology，7：214。
Otta T. 1993. Amino acid substitution at the Adh locus of Drosophila is facilitated by small population size[J]. Proceedings of the National Academy of Sciences USA，90：4548－4551。
Posada D, Crandall KA. 1998. Modeltest; testing the model of DNA substitution[J]. Bioinformatics，14：817－818。
Woofit M, Bromham L. 2003. Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes[J]. Molecular Biology and Evolution，20：1545－1555。